CREATER: CTR-driven Advertising Text Generation with Controlled Pre-Training and Contrastive Fine-Tuning

Penghui Wei, Xuanhua Yang, Shaoguo Liu, Liang Wang, Bo Zheng
{"title":"CREATER: CTR-driven Advertising Text Generation with Controlled Pre-Training and Contrastive Fine-Tuning","authors":"Penghui Wei, Xuanhua Yang, Shaoguo Liu, Liang Wang, Bo Zheng","doi":"10.48550/arXiv.2205.08943","DOIUrl":null,"url":null,"abstract":"This paper focuses on automatically generating the text of an ad, and the goal is that the generated text can capture user interest for achieving higher click-through rate (CTR). We propose CREATER, a CTR-driven advertising text generation approach, to generate ad texts based on high-quality user reviews. To incorporate CTR objective, our model learns from online A/B test data with contrastive learning, which encourages the model to generate ad texts that obtain higher CTR. To make use of large-scale unpaired reviews, we design a customized self-supervised objective reducing the gap between pre-training and fine-tuning. Experiments on industrial datasets show that CREATER significantly outperforms current approaches. It has been deployed online in a leading advertising platform and brings uplift on core online metrics.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.08943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper focuses on automatically generating the text of an ad, and the goal is that the generated text can capture user interest for achieving higher click-through rate (CTR). We propose CREATER, a CTR-driven advertising text generation approach, to generate ad texts based on high-quality user reviews. To incorporate CTR objective, our model learns from online A/B test data with contrastive learning, which encourages the model to generate ad texts that obtain higher CTR. To make use of large-scale unpaired reviews, we design a customized self-supervised objective reducing the gap between pre-training and fine-tuning. Experiments on industrial datasets show that CREATER significantly outperforms current approaches. It has been deployed online in a leading advertising platform and brings uplift on core online metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CREATER: ctrl驱动的广告文本生成与控制的预训练和对比微调
本文的重点是自动生成广告文本,目标是生成的文本可以捕获用户的兴趣,以实现更高的点击率(CTR)。我们提出了一种名为CREATER的广告文本生成方法,它基于高质量的用户评论生成广告文本。为了结合点击率目标,我们的模型通过对比学习从在线A/B测试数据中学习,这鼓励模型生成获得更高点击率的广告文本。为了利用大规模的非配对评论,我们设计了一个定制的自监督目标,减少了预训练和微调之间的差距。在工业数据集上的实验表明,CREATER显著优于当前的方法。它已被部署在一个领先的在线广告平台上,并带来了核心在线指标的提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Synthetic Data for Back Translation Mining Clues from Incomplete Utterance: A Query-enhanced Network for Incomplete Utterance Rewriting Using Paraphrases to Study Properties of Contextual Embeddings GMN: Generative Multi-modal Network for Practical Document Information Extraction Domain Confused Contrastive Learning for Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1