Sanjoy Mondal, A. Srivastava, Aikya Maji, R. Chakraborty, Aryan Singh, Diptava Singha Roy, S. Mukherjee
{"title":"A Distributed Fixed-Time Consensus for Battery Storage Systems","authors":"Sanjoy Mondal, A. Srivastava, Aikya Maji, R. Chakraborty, Aryan Singh, Diptava Singha Roy, S. Mukherjee","doi":"10.1109/IEMRE52042.2021.9386971","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of fixed-time synchronization for a class of second-order nonlinear multiagent systems. By using the finite-time control technique and homogeneous systems theory, a fixed-time controller is first developed for a battery energy storage system (BESS). An integral consensus control is applied to the energy storage systems to synchronize the energy and power levels of batteries with the exchange of information between them. Both energy and power information of the storage systems will be fed into each other. The control architecture is based on the multi agent framework and takes into consideration that all batteries should work in the same charging or discharging mode. As such operations improve the state of health of the batteries. Compared with the consensus control in the existing literature for voltage consensus or battery power consensus, this paper offers a fixed time consensus which improves the convergence time and also ensures the robustness in the system. The major assumption of the paper is that each converter should possess an integral control. Simulation results demonstrate the effectiveness of the fixed time integral consensus for variety modes of operation: charging, discharging, and load variation.","PeriodicalId":202287,"journal":{"name":"2021 Innovations in Energy Management and Renewable Resources(52042)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Innovations in Energy Management and Renewable Resources(52042)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMRE52042.2021.9386971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we consider the problem of fixed-time synchronization for a class of second-order nonlinear multiagent systems. By using the finite-time control technique and homogeneous systems theory, a fixed-time controller is first developed for a battery energy storage system (BESS). An integral consensus control is applied to the energy storage systems to synchronize the energy and power levels of batteries with the exchange of information between them. Both energy and power information of the storage systems will be fed into each other. The control architecture is based on the multi agent framework and takes into consideration that all batteries should work in the same charging or discharging mode. As such operations improve the state of health of the batteries. Compared with the consensus control in the existing literature for voltage consensus or battery power consensus, this paper offers a fixed time consensus which improves the convergence time and also ensures the robustness in the system. The major assumption of the paper is that each converter should possess an integral control. Simulation results demonstrate the effectiveness of the fixed time integral consensus for variety modes of operation: charging, discharging, and load variation.