Generalized Label Grouping for Scalable Trajectory Estimation

Changbeom Shim, Ji Youn Lee, D. Moratuwage, D. Kim, Y. Chung
{"title":"Generalized Label Grouping for Scalable Trajectory Estimation","authors":"Changbeom Shim, Ji Youn Lee, D. Moratuwage, D. Kim, Y. Chung","doi":"10.1109/ICCAIS56082.2022.9990167","DOIUrl":null,"url":null,"abstract":"Multi-Object Tracking (MOT) is concerned with estimating trajectories from sensor measurements. MOT using the Random Finite Set (RFS) framework has been gaining popularity due to its rigorous mathematical foundation and versatility in applications. Notably, large-scale trajectory estimation can be successfully achieved by the label-partitioned Generalized Labeled Multi-Bernoulli (GLMB) filter framework. In this work, we propose an efficient method for grouping object labels in scalable GLMB filtering. Specifically, the label grouping problem for parallel computation is generalized by considering the intersection of predicted measurements, i.e., uncertainty regions. The proposed approach provides a flexible criterion to construct label graphs, whereupon a large number of object labels can be rapidly determined whether to be grouped or not. We demonstrate the performance of our method via large-scale data sets.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-Object Tracking (MOT) is concerned with estimating trajectories from sensor measurements. MOT using the Random Finite Set (RFS) framework has been gaining popularity due to its rigorous mathematical foundation and versatility in applications. Notably, large-scale trajectory estimation can be successfully achieved by the label-partitioned Generalized Labeled Multi-Bernoulli (GLMB) filter framework. In this work, we propose an efficient method for grouping object labels in scalable GLMB filtering. Specifically, the label grouping problem for parallel computation is generalized by considering the intersection of predicted measurements, i.e., uncertainty regions. The proposed approach provides a flexible criterion to construct label graphs, whereupon a large number of object labels can be rapidly determined whether to be grouped or not. We demonstrate the performance of our method via large-scale data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展轨迹估计的广义标签分组
多目标跟踪(MOT)涉及从传感器测量中估计轨迹。使用随机有限集(RFS)框架的MOT由于其严格的数学基础和应用的通用性而越来越受欢迎。值得注意的是,通过标记分割的广义标记多伯努利(GLMB)滤波器框架可以成功地实现大规模轨迹估计。在这项工作中,我们提出了一种有效的可扩展GLMB过滤中对象标签分组的方法。具体地说,通过考虑预测测量的交集,即不确定区域,推广了并行计算的标签分组问题。该方法为构建标签图提供了一个灵活的准则,从而可以快速确定大量对象标签是否分组。我们通过大规模数据集证明了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Smart Shoes for Running Gait Analysis Based on Deep Learning A quadratic correlation algorithm with variable sets of lags for frequency estimation Deployment of UAVs for Optimal Multihop Ad-hoc Networks Using Particle Swarm Optimization and Behavior-based Control Analyze the Transient Overvoltages in the station of Vietnamese model HVDC-MMC system Dual-scale generalized Radon-Fourier transform family for long time coherent integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1