{"title":"Mechanical Behaviour of a Forged Ferritic Steel Shell Containing Numerous Hydrogen Flakes","authors":"C. Jacquemoud, I. Delvallée-Nunio","doi":"10.1115/PVP2018-84087","DOIUrl":null,"url":null,"abstract":"Following the flaw indications found in summer 2012 in two Belgian Reactors Pressure Vessels (RPV), WENRA recommended [1] the nuclear safety authorities in Europe to verify the material quality and integrity of the RPV in a 2-step approach: 1) a comprehensive review of the manufacturing and inspection records of the forgings of the RPV, 2) an additional UT examination of the base material of the vessels if needed.\n In this context, and to consolidate scientific basis on this issue, IRSN, the French technical safety organization, conducted, with CEA support, a test program aiming at studying the consequences of hydrogen flakes in large forgings of primary equipment (RPV, steam generator, pressurizer).\n Framatome provided the material to be investigated, namely two blocks of a steam generator vessel shell in 18MND5 steel: a block without flake — the reference block — and a block including a high density of hydrogen flakes. This shell — so called VB395 — was rejected because of an incident which occurred during the degassing heat treatment.\n Fracture toughness has been evaluated from 85 tests in the ductile range and the ductile-to-brittle transition range of the material. The test results on usual 0.5T-CT specimens were compared to those on specimens containing a hydrogen flake replacing the fatigue precrack. The latter were interpreted using 3D elastic-plastic X-FEM simulations allowing the modelling of the irregular flake geometry.\n Furthermore, large scale bending specimens with multiple flakes have been tested at −100°C. These tests were interpreted thanks to 3D X-FEM simulations allowing the analysis of the hydrogen flake interaction in terms of KJ.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Following the flaw indications found in summer 2012 in two Belgian Reactors Pressure Vessels (RPV), WENRA recommended [1] the nuclear safety authorities in Europe to verify the material quality and integrity of the RPV in a 2-step approach: 1) a comprehensive review of the manufacturing and inspection records of the forgings of the RPV, 2) an additional UT examination of the base material of the vessels if needed.
In this context, and to consolidate scientific basis on this issue, IRSN, the French technical safety organization, conducted, with CEA support, a test program aiming at studying the consequences of hydrogen flakes in large forgings of primary equipment (RPV, steam generator, pressurizer).
Framatome provided the material to be investigated, namely two blocks of a steam generator vessel shell in 18MND5 steel: a block without flake — the reference block — and a block including a high density of hydrogen flakes. This shell — so called VB395 — was rejected because of an incident which occurred during the degassing heat treatment.
Fracture toughness has been evaluated from 85 tests in the ductile range and the ductile-to-brittle transition range of the material. The test results on usual 0.5T-CT specimens were compared to those on specimens containing a hydrogen flake replacing the fatigue precrack. The latter were interpreted using 3D elastic-plastic X-FEM simulations allowing the modelling of the irregular flake geometry.
Furthermore, large scale bending specimens with multiple flakes have been tested at −100°C. These tests were interpreted thanks to 3D X-FEM simulations allowing the analysis of the hydrogen flake interaction in terms of KJ.