Multiobjective optimization of a quadruped robot gait

Edin Koco, Slaven Glumac, Z. Kovačić
{"title":"Multiobjective optimization of a quadruped robot gait","authors":"Edin Koco, Slaven Glumac, Z. Kovačić","doi":"10.1109/MED.2014.6961591","DOIUrl":null,"url":null,"abstract":"This paper presents the methodology used for finding the optimal set of foot trajectories for a quadruped robot using multiobjective genetic algorithm optimization. The optimization evaluates the energy per distance and average speed criteria on a robot simulation model. Robot locomotion is achieved by open-loop execution of foot trajectories generated in the local leg coordinate system. Foot trajectory is formulated as a sum of harmonics which enabled great flexibility in determining the final trajectory shape. A multiobjective optimization is introduced to tune the foot trajectory parameters in order to achieve energy optimal and fast robot locomotion. The obtained Pareto frontier showed that the bound gait is optimal for lower speeds while the trot gait enabled the robot to reach its maximum speed. The paper identifies the correlation between the stride frequency and robot speed for each identified gait laying on the Pareto frontier. Finally we discuss the trajectory shape of solutions obtained using multiobjective optimization.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the methodology used for finding the optimal set of foot trajectories for a quadruped robot using multiobjective genetic algorithm optimization. The optimization evaluates the energy per distance and average speed criteria on a robot simulation model. Robot locomotion is achieved by open-loop execution of foot trajectories generated in the local leg coordinate system. Foot trajectory is formulated as a sum of harmonics which enabled great flexibility in determining the final trajectory shape. A multiobjective optimization is introduced to tune the foot trajectory parameters in order to achieve energy optimal and fast robot locomotion. The obtained Pareto frontier showed that the bound gait is optimal for lower speeds while the trot gait enabled the robot to reach its maximum speed. The paper identifies the correlation between the stride frequency and robot speed for each identified gait laying on the Pareto frontier. Finally we discuss the trajectory shape of solutions obtained using multiobjective optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四足机器人步态的多目标优化
提出了一种利用多目标遗传算法优化四足机器人足部轨迹的方法。在机器人仿真模型上对每距离能量和平均速度准则进行了优化。机器人的运动是通过开环执行在局部腿部坐标系中生成的足部轨迹来实现的。足部轨迹被表述为谐波的总和,这使得在确定最终轨迹形状时具有很大的灵活性。为了实现能量优化和机器人快速运动,引入多目标优化方法对足部轨迹参数进行调整。得到的Pareto边界表明,束缚步态在较低速度下最优,而小跑步态使机器人达到最大速度。本文确定了在Pareto边界上每一种步态的步频与机器人速度之间的相关性。最后讨论了用多目标优化得到的解的轨迹形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online adaptive geometry predictor of aquaculture fish-nets Mathematical study of the global dynamics of a concave gene expression model Placement of fixed modes by decentralised output feedback control Identification and switching quasi-LPV control of a four wheeled omnidirectional robot Robust anomaly detection in dynamic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1