Wind distribution analysis incorporating Artificial Bee Colony Algorithm

K. Ravindra, R. S. Rao, S. Narasimham
{"title":"Wind distribution analysis incorporating Artificial Bee Colony Algorithm","authors":"K. Ravindra, R. S. Rao, S. Narasimham","doi":"10.1109/APCET.2012.6302073","DOIUrl":null,"url":null,"abstract":"Wind speed distribution analysis is essential for assessment of the wind energy potential and also performance of wind energy conversion system. Two-parameter Weibull is the commonly used Probability density function (PDF) to model wind speed distribution. Conventionally method of maximum likelihood (MLE) and method of moments (MOM) methods are used for parameter estimation. In this paper Artificial Bee Colony (ABC) algorithm is applied to compute shape and scale parameters of Weibull distribution function. Statistical parameters such as maximum error in the Kolmogorov-Smirnov test and coefficient of determination (R2) are considered as judgment criteria to test the goodness of fit of the Probability density function. Results show that parameter estimation incorporating Artificial Bee Colony (ABC) algorithm is better than conventional iterative solving of MLE and MOM methods.","PeriodicalId":184844,"journal":{"name":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCET.2012.6302073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wind speed distribution analysis is essential for assessment of the wind energy potential and also performance of wind energy conversion system. Two-parameter Weibull is the commonly used Probability density function (PDF) to model wind speed distribution. Conventionally method of maximum likelihood (MLE) and method of moments (MOM) methods are used for parameter estimation. In this paper Artificial Bee Colony (ABC) algorithm is applied to compute shape and scale parameters of Weibull distribution function. Statistical parameters such as maximum error in the Kolmogorov-Smirnov test and coefficient of determination (R2) are considered as judgment criteria to test the goodness of fit of the Probability density function. Results show that parameter estimation incorporating Artificial Bee Colony (ABC) algorithm is better than conventional iterative solving of MLE and MOM methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合人工蜂群算法的风场分析
风速分布分析是评估风能潜力和风能转换系统性能的基础。双参数威布尔是常用的概率密度函数(PDF)来模拟风速分布。传统的参数估计方法采用极大似然法和矩量法。本文采用人工蜂群(Artificial Bee Colony, ABC)算法计算威布尔分布函数的形状和尺度参数。以Kolmogorov-Smirnov检验的最大误差和决定系数R2等统计参数作为判断标准,检验概率密度函数的拟合优度。结果表明,采用人工蜂群(ABC)算法的参数估计优于传统的MLE和MOM迭代求解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective approach for ATC enhancement with FACTS device - A case study Hybrid controller for inverted pendulum Congestion management in a pool model with bilateral contract by generation rescheduling based on PSO A novel linear controller for grid connected doubly fed induction generator (DFIG) Interval type-2 fuzzy logic controller as a power system stabilizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1