bacon: Linked Data Integration based on the RDF Data Cube Vocabulary

Sebastian P. Bayerl, M. Granitzer
{"title":"bacon: Linked Data Integration based on the RDF Data Cube Vocabulary","authors":"Sebastian P. Bayerl, M. Granitzer","doi":"10.1145/2797115.2797126","DOIUrl":null,"url":null,"abstract":"Discovering and integrating relevant real-live datasets are essential tasks, when it comes to handling Linked Data. Similar to Data Warehousing approaches, Linked Data can be prepared to enable sophisticated data analysis. The developed open source framework bacon enables interactive and crowed-sourced Data Integration on Linked Data (Linked Data Integration), utilizing the RDF Data Cube Vocabulary and the semantic properties of Linked Open Data. Discovering suitable datasets on-the-fly in local or remote repositories sets up the ensuing integration process. Based on well-known Data Warehousing processes, the semantic nature of the data is taken into account to handle and merge RDF Data Cubes. To do so, structure and content of the cubes must be analyzed and processed. A similarity measure has been developed to find similarly structured cubes. The user is offered a graphical interface, where he can search for suitable cubes and modify their structure based on semantic properties. This process is fostered by a set of automated suggestions to support inexperienced users and also domain experts.","PeriodicalId":386229,"journal":{"name":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2797115.2797126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Discovering and integrating relevant real-live datasets are essential tasks, when it comes to handling Linked Data. Similar to Data Warehousing approaches, Linked Data can be prepared to enable sophisticated data analysis. The developed open source framework bacon enables interactive and crowed-sourced Data Integration on Linked Data (Linked Data Integration), utilizing the RDF Data Cube Vocabulary and the semantic properties of Linked Open Data. Discovering suitable datasets on-the-fly in local or remote repositories sets up the ensuing integration process. Based on well-known Data Warehousing processes, the semantic nature of the data is taken into account to handle and merge RDF Data Cubes. To do so, structure and content of the cubes must be analyzed and processed. A similarity measure has been developed to find similarly structured cubes. The user is offered a graphical interface, where he can search for suitable cubes and modify their structure based on semantic properties. This process is fostered by a set of automated suggestions to support inexperienced users and also domain experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
bacon:基于RDF数据立方体词汇表的关联数据集成
在处理关联数据时,发现和集成相关的实时数据集是必不可少的任务。与数据仓库方法类似,可以准备关联数据以启用复杂的数据分析。开发的开源框架培根利用RDF数据立方体词汇表和链接开放数据的语义属性,支持在关联数据上进行交互式和众源数据集成(关联数据集成)。在本地或远程存储库中动态发现合适的数据集可以建立随后的集成过程。基于众所周知的数据仓库流程,考虑了数据的语义性质来处理和合并RDF数据立方体。为此,必须分析和处理多维数据集的结构和内容。人们开发了一种相似性度量来寻找结构相似的立方体。为用户提供了一个图形界面,用户可以在其中搜索合适的多维数据集并根据语义属性修改它们的结构。这个过程是由一组自动建议来促进的,以支持没有经验的用户和领域专家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and predicting information search behavior An Ontology Enrichment Approach by Using DBpedia Semantic Integration of Structured Data Powered by Linked Open Data A LOD-based, query construction and refinement service for web search engines Recommending Customizable Products: A Multiple Choice Knapsack Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1