{"title":"Lumina: a soft kinetic material for morphing architectural skins and organic user interfaces","authors":"Chin Koi Khoo, Flora D. Salim","doi":"10.1145/2493432.2494263","DOIUrl":null,"url":null,"abstract":"The pervasive computing era has seen sensor and actuator technologies integrated into the design of kinetic building skins. This paper presents an investigation of a new soft kinetic material that has potential applications for morphing architectural building skins and organic user interfaces. The material capacities of Lumina to sense the ambient environment, morph and change forms, and emit light are demonstrated in the two prototypes presented in the paper. The first prototype is Blind, a form-changing organic user interface with multiple eye-like apertures that can be programmed to accept data input for visual communication. The second prototype is Blanket, a responsive morphing architectural skin with minimal mechanical and discrete components that sense real-time space occupancy data, manipulate light effects, perform active illumination, and act as an ambient display.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2494263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
The pervasive computing era has seen sensor and actuator technologies integrated into the design of kinetic building skins. This paper presents an investigation of a new soft kinetic material that has potential applications for morphing architectural building skins and organic user interfaces. The material capacities of Lumina to sense the ambient environment, morph and change forms, and emit light are demonstrated in the two prototypes presented in the paper. The first prototype is Blind, a form-changing organic user interface with multiple eye-like apertures that can be programmed to accept data input for visual communication. The second prototype is Blanket, a responsive morphing architectural skin with minimal mechanical and discrete components that sense real-time space occupancy data, manipulate light effects, perform active illumination, and act as an ambient display.