Anomaly Detection in data streams using fuzzy logic

Muhammad Umair Khan
{"title":"Anomaly Detection in data streams using fuzzy logic","authors":"Muhammad Umair Khan","doi":"10.1109/ICICT.2009.5267196","DOIUrl":null,"url":null,"abstract":"Unsupervised data mining techniques require human intervention for understanding and analysis of the clustering results. This becomes an issue in dynamic users/applications and there is a need for real-time decision making and interpretation. In this paper we will present an approach to automate the annotation of results obtained from data stream clustering to facilitate interpreting that whether the given cluster is an anomaly or not. We use fuzzy logic to label the data. The results will be obtained on the basis of density function & the number of elements in a certain cluster.","PeriodicalId":147005,"journal":{"name":"2009 International Conference on Information and Communication Technologies","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2009.5267196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Unsupervised data mining techniques require human intervention for understanding and analysis of the clustering results. This becomes an issue in dynamic users/applications and there is a need for real-time decision making and interpretation. In this paper we will present an approach to automate the annotation of results obtained from data stream clustering to facilitate interpreting that whether the given cluster is an anomaly or not. We use fuzzy logic to label the data. The results will be obtained on the basis of density function & the number of elements in a certain cluster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用模糊逻辑检测数据流中的异常
无监督数据挖掘技术需要人为干预来理解和分析聚类结果。这在动态用户/应用程序中成为一个问题,并且需要实时决策和解释。在本文中,我们将提出一种方法来自动标注从数据流聚类中获得的结果,以方便解释给定的聚类是否异常。我们用模糊逻辑来标记数据。结果将根据密度函数和某个簇中的元素数量得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytic network process applied to R&D project selection The impact of Performance Management System on the performance of the employees & the organization Assessment of node density in Cartesian Ad hoc Routing Protocols (CARP) Power optimization of relay channels A comparative analysis of DCCP variants (CCID2, CCID3), TCP and UDP for MPEG4 video applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1