Adaptive Rival Penalized Competitive Learning and Combined Linear Predictor with application to financial investment

Yiu-ming Cheung, Helen Z. H. Lai, L. Xu
{"title":"Adaptive Rival Penalized Competitive Learning and Combined Linear Predictor with application to financial investment","authors":"Yiu-ming Cheung, Helen Z. H. Lai, L. Xu","doi":"10.1109/CIFER.1996.501838","DOIUrl":null,"url":null,"abstract":"We have recently proposed an architecture called Rival Penalized Competitive Learning and Combined Linear Predictor (RPCL-CLP) to model financial time series with a certain degree of success (Cheung et al., 1995). Experiments have shown that RPCL-CLP outperforms ClusNet (Hsu et al., 1993), but it still has features which can be further improved. We propose a modified version called Adaptive RPCL-CLP which can automatically select the number of the initial cluster nodes for RPCL (Xu et al., 1993) and adaptively train the linear predictor's parameters in each cluster node as well as the gating network. We apply it to the forecasting of foreign exchange rates and the Shanghai stock price. As shown by experiments, this adaptive version is much better than RPCL-CLP, and with a trading system it can bring in more returns in foreign exchange market trading.","PeriodicalId":378565,"journal":{"name":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.1996.501838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We have recently proposed an architecture called Rival Penalized Competitive Learning and Combined Linear Predictor (RPCL-CLP) to model financial time series with a certain degree of success (Cheung et al., 1995). Experiments have shown that RPCL-CLP outperforms ClusNet (Hsu et al., 1993), but it still has features which can be further improved. We propose a modified version called Adaptive RPCL-CLP which can automatically select the number of the initial cluster nodes for RPCL (Xu et al., 1993) and adaptively train the linear predictor's parameters in each cluster node as well as the gating network. We apply it to the forecasting of foreign exchange rates and the Shanghai stock price. As shown by experiments, this adaptive version is much better than RPCL-CLP, and with a trading system it can bring in more returns in foreign exchange market trading.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应对手惩罚竞争学习与组合线性预测器在金融投资中的应用
我们最近提出了一种名为“对手惩罚竞争学习和组合线性预测器”(RPCL-CLP)的架构,用于对金融时间序列进行建模,并取得了一定程度的成功(Cheung et al., 1995)。实验表明,RPCL-CLP优于ClusNet (Hsu et al., 1993),但仍有可以进一步改进的特点。我们提出了一个改进版本,称为自适应RPCL- clp,它可以自动选择RPCL的初始集群节点数量(Xu et al., 1993),并自适应地训练每个集群节点和门控网络中的线性预测器参数。我们将其应用于外汇汇率和上海股票价格的预测。实验表明,该自适应版本比RPCL-CLP要好得多,并且配合交易系统,可以在外汇市场交易中带来更高的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of an investment in South East Asian country funds investment company Self-organizing fuzzy and MLP approaches to detecting fraudulent financial reporting Density-based clustering and radial basis function modeling to generate credit card fraud scores The gene expression messy genetic algorithm for financial applications Problems with Monte Carlo simulation in the pricing of contingent claims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1