Performance Comparison of Machine Learning Models Trained on Manual vs ASR Transcriptions for Dialogue Act Annotation

Usman Malik, Mukesh Barange, Julien Saunier, A. Pauchet
{"title":"Performance Comparison of Machine Learning Models Trained on Manual vs ASR Transcriptions for Dialogue Act Annotation","authors":"Usman Malik, Mukesh Barange, Julien Saunier, A. Pauchet","doi":"10.1109/ICTAI.2018.00156","DOIUrl":null,"url":null,"abstract":"Automatic dialogue act annotation of speech utterances is an important task in human-agent interaction in order to correctly interpret user utterances. Speech utterances can be transcribed manually or via Automatic Speech Recognizer (ASR). In this article, several Machine Learning models are trained on manual and ASR transcriptions of user utterances, using bag of words and n-grams feature generation approaches, and evaluated on ASR transcribed test set. Results show that models trained using ASR transcriptions perform better than algorithms trained on manual transcription. The impact of irregular distribution of dialogue acts on the accuracy of statistical models is also investigated, and a partial solution to this issue is shown using multimodal information as input.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Automatic dialogue act annotation of speech utterances is an important task in human-agent interaction in order to correctly interpret user utterances. Speech utterances can be transcribed manually or via Automatic Speech Recognizer (ASR). In this article, several Machine Learning models are trained on manual and ASR transcriptions of user utterances, using bag of words and n-grams feature generation approaches, and evaluated on ASR transcribed test set. Results show that models trained using ASR transcriptions perform better than algorithms trained on manual transcription. The impact of irregular distribution of dialogue acts on the accuracy of statistical models is also investigated, and a partial solution to this issue is shown using multimodal information as input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对话行为注释中手动与ASR转录训练的机器学习模型的性能比较
语音的自动对话行为标注是人机交互中正确解读用户语音的重要任务。语音可以手动或通过自动语音识别器(ASR)转录。在本文中,使用单词袋和n-grams特征生成方法,在用户话语的手动和ASR转录上训练了几个机器学习模型,并在ASR转录测试集上进行了评估。结果表明,使用ASR转录训练的模型比手动转录训练的算法表现更好。研究了对话行为不规则分布对统计模型准确性的影响,并以多模态信息作为输入,给出了该问题的部分解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Title page i] Enhanced Unsatisfiable Cores for QBF: Weakening Universal to Existential Quantifiers Effective Ant Colony Optimization Solution for the Brazilian Family Health Team Scheduling Problem Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery Assigning and Scheduling Service Visits in a Mixed Urban/Rural Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1