Do the Effects of Krebs Cycle Intermediates on Oxygen-Dependent Processes in Hypoxia Mediated by the Nitric Oxide System Have Reciprocal or Competitive Relationships?
{"title":"Do the Effects of Krebs Cycle Intermediates on Oxygen-Dependent Processes in Hypoxia Mediated by the Nitric Oxide System Have Reciprocal or Competitive Relationships?","authors":"Natalia Kurhaluk, Oleksandr Lukash, Halina Tkaczenko","doi":"10.33594/000000669","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Currently, it is proven that the cellular metabolism of nitric oxide is necessary to maintain optimal health and adaptation of the organism to the impact of various environmental factors. The aim of this work was to reveal the biological role of nitric oxide, its metabolic changes, and its mechanism of action in tissues under hypoxia, as well as the possibility of tissue metabolism correction through NO-dependent systems under the influence of Krebs cycle intermediates.</p><p><strong>Methods: </strong>A systematic assessment of the effect of succinate (SC, 50 mg/kg b.w.) and α-ketoglutarate (KGL, 50 mg/kg b.w.) in the regulation of oxygendependent processes in rats (mitochondrial oxidative phosphorylation, microsomal oxidation, intensity of lipid peroxidation processes, and the state of the antioxidant defense system) depending on functional changes in nitric oxide production during hypoxia was evaluated. The state of the nitric oxide system was estimated spectrophotometrically by determination of the concentration of its stable nitrite anion metabolite (NO<sub>2</sub> -). The levels of catecholamines were estimated from the content of epinephrine and norepinephrine using the differentially fluorescent method. The activity of cytochrome P450-dependent aminopyrine-N-demethylase was determined with the Nash reagent.</p><p><strong>Results: </strong>Tissue hypoxia and metabolic disorders caused by this condition through changes in the content of catecholamines (epinephrine, norepinephrine, dopamine, DOPA) as well as the cholinesterase-related system (acetylcholine content and acetylcholinesterase activity) were the studied experimental parameters under acute hypoxia (AH, 7% O<sub>2</sub> in N<sub>2</sub>, 30 min). The activation of lipid peroxidation and oxidatively modified proteins and an increase in the epinephrine content in AH are associated with an increased role of SC and a decrease in KGL as substrates of oxidation in mitochondria. A more pronounced effect of exogenous KGL, compared to SC, on the content of nitrite anion as a stable metabolite of nitric oxide in the liver under acute hypoxia against the background of a decrease in the intensity of lipid peroxidation processes was revealed. The activation of SC-dependent mitochondrial oxidative processes caused by AH was found to decrease in animals after an intermittent hypoxia training (IHT) course. IHT (7% O<sub>2</sub> in N<sub>2</sub>, 15-min, 5 times daily, 14 days) prevented the activation of oxidative stress in tissues and blood after the AH impact and increased the efficiency of energy-related reactions in the functioning of hepatic mitochondria through increased oxidation of KGL.</p><p><strong>Conclusion: </strong>The studied effects of adaptation are mediated by an increase in the role of NO-dependent mechanisms, as assessed by changes in the pool of nitrates, nitrites, carbamides, and total polyamines.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"57 6","pages":"426-451"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: Currently, it is proven that the cellular metabolism of nitric oxide is necessary to maintain optimal health and adaptation of the organism to the impact of various environmental factors. The aim of this work was to reveal the biological role of nitric oxide, its metabolic changes, and its mechanism of action in tissues under hypoxia, as well as the possibility of tissue metabolism correction through NO-dependent systems under the influence of Krebs cycle intermediates.
Methods: A systematic assessment of the effect of succinate (SC, 50 mg/kg b.w.) and α-ketoglutarate (KGL, 50 mg/kg b.w.) in the regulation of oxygendependent processes in rats (mitochondrial oxidative phosphorylation, microsomal oxidation, intensity of lipid peroxidation processes, and the state of the antioxidant defense system) depending on functional changes in nitric oxide production during hypoxia was evaluated. The state of the nitric oxide system was estimated spectrophotometrically by determination of the concentration of its stable nitrite anion metabolite (NO2 -). The levels of catecholamines were estimated from the content of epinephrine and norepinephrine using the differentially fluorescent method. The activity of cytochrome P450-dependent aminopyrine-N-demethylase was determined with the Nash reagent.
Results: Tissue hypoxia and metabolic disorders caused by this condition through changes in the content of catecholamines (epinephrine, norepinephrine, dopamine, DOPA) as well as the cholinesterase-related system (acetylcholine content and acetylcholinesterase activity) were the studied experimental parameters under acute hypoxia (AH, 7% O2 in N2, 30 min). The activation of lipid peroxidation and oxidatively modified proteins and an increase in the epinephrine content in AH are associated with an increased role of SC and a decrease in KGL as substrates of oxidation in mitochondria. A more pronounced effect of exogenous KGL, compared to SC, on the content of nitrite anion as a stable metabolite of nitric oxide in the liver under acute hypoxia against the background of a decrease in the intensity of lipid peroxidation processes was revealed. The activation of SC-dependent mitochondrial oxidative processes caused by AH was found to decrease in animals after an intermittent hypoxia training (IHT) course. IHT (7% O2 in N2, 15-min, 5 times daily, 14 days) prevented the activation of oxidative stress in tissues and blood after the AH impact and increased the efficiency of energy-related reactions in the functioning of hepatic mitochondria through increased oxidation of KGL.
Conclusion: The studied effects of adaptation are mediated by an increase in the role of NO-dependent mechanisms, as assessed by changes in the pool of nitrates, nitrites, carbamides, and total polyamines.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.