Research on the Driving Simulation Method of a Manned Lunar Rover System for Somatosensory Representation

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Microgravity Science and Technology Pub Date : 2023-11-03 DOI:10.1007/s12217-023-10078-5
Qihang Yu, Dianliang Wu, Shunzhou Huang, Hanzhong Xu, Yue Zhao, Huanchong Cheng
{"title":"Research on the Driving Simulation Method of a Manned Lunar Rover System for Somatosensory Representation","authors":"Qihang Yu,&nbsp;Dianliang Wu,&nbsp;Shunzhou Huang,&nbsp;Hanzhong Xu,&nbsp;Yue Zhao,&nbsp;Huanchong Cheng","doi":"10.1007/s12217-023-10078-5","DOIUrl":null,"url":null,"abstract":"<div><p>During the lunar surface activities of the manned lunar landing project, the design verification and driving training of the manned lunar rover system should be carried out according to the requirements of space mission verification and astronaut comprehensive operation training. In this case, it is difficult to conduct somatosensory simulation of human rover driving training in the lunar surface environment. To solve the above problems, first, the characteristics of astronaut motion sensing information reception were analyzed, the lunar surface environment was created in the virtual environment, the lunar gravity conditions were established, and the dynamics model of the man-vehicle-moon system was established for motion sensing simulation. Then, the parameters of the somatosensory model are provided by dynamics calculation, and the astronaut's attitude adjustment is considered to simulate and verify the somatosensory model. Finally, the motion characteristics of astronauts driving on the Moon are analyzed, which provides support for the design verification and driving operation training of manned lunar rovers.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-023-10078-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10078-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

During the lunar surface activities of the manned lunar landing project, the design verification and driving training of the manned lunar rover system should be carried out according to the requirements of space mission verification and astronaut comprehensive operation training. In this case, it is difficult to conduct somatosensory simulation of human rover driving training in the lunar surface environment. To solve the above problems, first, the characteristics of astronaut motion sensing information reception were analyzed, the lunar surface environment was created in the virtual environment, the lunar gravity conditions were established, and the dynamics model of the man-vehicle-moon system was established for motion sensing simulation. Then, the parameters of the somatosensory model are provided by dynamics calculation, and the astronaut's attitude adjustment is considered to simulate and verify the somatosensory model. Finally, the motion characteristics of astronauts driving on the Moon are analyzed, which provides support for the design verification and driving operation training of manned lunar rovers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
载人月球车系统体感表征驱动仿真方法研究
在载人登月工程的月面活动中,应根据航天任务验证和航天员综合操作训练的要求,对载人月球车系统进行设计验证和驾驶训练。在这种情况下,很难在月球表面环境下进行人体漫游车驾驶训练的体感模拟。针对上述问题,首先分析了航天员体感信息接收特性,在虚拟环境中创建了月球表面环境,建立了月球重力条件,建立了人-车-月系统动力学模型进行体感仿真。然后,通过动力学计算提供体感模型参数,并考虑宇航员姿态调整对体感模型进行仿真验证。最后,分析了航天员在月球上驾驶的运动特性,为载人月球车的设计验证和驾驶操作训练提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
期刊最新文献
Correlation Between Invariable Blood Proteins and Heart Rate Variability in Long-Duration Space Flights Numerical Investigation on Mechanism Analysis of Bubble Pinch-off Experimental Study on Startup Performance of a High-temperature Liquid Metal Heat Pipe with Fins Exploring the Frontier of Space Medicine: The Nexus of Bone Regeneration and Astronautic Health in Microgravity Conditions Study on the instability of FC-72 vapor–liquid interface in a rectangular channel under different gravity conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1