Crystal structures inherited from parent high-temperature disordered microblocks: Ca2SiO4, Na2SO4–K2SO4 sulfates, and related minerals (bubnovaite and dobrovolskyite)
Andrey P. Shablinskii, Stanislav K. Filatov, Yaroslav P. Biryukov
{"title":"Crystal structures inherited from parent high-temperature disordered microblocks: Ca2SiO4, Na2SO4–K2SO4 sulfates, and related minerals (bubnovaite and dobrovolskyite)","authors":"Andrey P. Shablinskii, Stanislav K. Filatov, Yaroslav P. Biryukov","doi":"10.1007/s00269-023-01253-6","DOIUrl":null,"url":null,"abstract":"<div><p>Crystal structures of Ca<sub>2</sub>SiO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>–K<sub>2</sub>SO<sub>4</sub> sulfates, and related minerals bubnovaite K<sub>2</sub>Na<sub>8</sub>Ca(SO<sub>4</sub>)<sub>6</sub> and dobrovolskyite Na<sub>4</sub>Ca(SO<sub>4</sub>)<sub>3</sub> were described as consisting of microblocks for the first time. A microblock [<i>M</i>(<i>T</i>O<sub>4</sub>)<sub>6</sub>] that consisted of an octahedron interlinked by six vertices with six adjacent tetrahedra was considered a structural unit inherited upon cooling from a high-temperature disordered parent unit. The relationship between the parent and inherited microblocks was established. Based on this relationship, 15 possible types of microblocks maintaining a trigonal symmetry were derived. The minerals and compounds structurally related to α-Na<sub>2</sub>SO<sub>4</sub>-derived superstructures were formed as a result of the cooling of the high-temperature phases containing the disordered parent microblock. Here, the inheritance driving force was the tendency of the structure to become ordered upon cooling. The reasons for the formation of a microblock from the parent microblock were mainly determined by the ionic radius and type of cation occupying the octahedral site. The identification of minerals with the described structural features could be a promising tool for the synthesis of novel compounds with useful properties.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01253-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Crystal structures of Ca2SiO4, Na2SO4–K2SO4 sulfates, and related minerals bubnovaite K2Na8Ca(SO4)6 and dobrovolskyite Na4Ca(SO4)3 were described as consisting of microblocks for the first time. A microblock [M(TO4)6] that consisted of an octahedron interlinked by six vertices with six adjacent tetrahedra was considered a structural unit inherited upon cooling from a high-temperature disordered parent unit. The relationship between the parent and inherited microblocks was established. Based on this relationship, 15 possible types of microblocks maintaining a trigonal symmetry were derived. The minerals and compounds structurally related to α-Na2SO4-derived superstructures were formed as a result of the cooling of the high-temperature phases containing the disordered parent microblock. Here, the inheritance driving force was the tendency of the structure to become ordered upon cooling. The reasons for the formation of a microblock from the parent microblock were mainly determined by the ionic radius and type of cation occupying the octahedral site. The identification of minerals with the described structural features could be a promising tool for the synthesis of novel compounds with useful properties.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)