首页 > 最新文献

Physics and Chemistry of Minerals最新文献

英文 中文
Thermophysical properties of synthetic marialite
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1007/s00269-024-01307-3
David M. Jenkins, Jared P. Matteucci, Alexander J. Kerstanski, Johannes Hammerli, Katherine S. Shanks, Zhongwu Wang

Marialite (Na3Al3Si9O24·NaCl) represents a key end-member of the scapolite mineral group because it has the potential for revealing the chloride content of the paleofluid from which it formed. Here we provide measurements of the basic thermophysical properties of synthetic marialite which do not currently exist and which complement similar data for calcium-carbonate-bearing scapolites. Synthetic marialite was made from reagent oxides and NaCl treated at 1050 °C and 1.7 GPa for 48–120 h. Average unit-cell dimensions for synthetic marialite at 298 K and 1 atm are ao = 12.038 ± 0.002 Å, co = 7.539 ± 0.004 Å, and Vo = 1092.6 ± 0.8 Å3, with a molar volume of 328.99 ± 0.24 cm3/mole. Thermal expansion measurements were made at 1 atm from 298–1105 K and showed that a increases while c decreases with an overall increase in volume upon heating. Compressibility measurements were made at room temperature in a diamond-anvil cell using 4:1 methanol: ethanol pressure medium in transmission mode at the Cornell High Energy Synchrotron Source facility with pressures ranging from 1 atm to 9.6 GPa. The a dimension is more compressible than c up to ~ 5 GPa, beyond which there is noticeable softening along the c axis. Equation of state modeling was done on the combined pressure–temperature-volume data using a Tait equation of state yielding bulk modulus and thermal expansion values for Ko, K’, and α of 51.0 ± 2.0 GPa, 6.68 ± 0.83, and 2.75 ± 0.17 × 10–5/K, respectively. Compared with other scapolite data in the literature, the marialite (Na3Al3Si9O24·NaCl)-meionite (Ca3Al6Si6O24·CaCO3) join behaves similarly to the albite-anorthite plagioclase join, with end-member marialite having the highest thermal expansion and lowest bulk modulus along the compositional join.

{"title":"Thermophysical properties of synthetic marialite","authors":"David M. Jenkins,&nbsp;Jared P. Matteucci,&nbsp;Alexander J. Kerstanski,&nbsp;Johannes Hammerli,&nbsp;Katherine S. Shanks,&nbsp;Zhongwu Wang","doi":"10.1007/s00269-024-01307-3","DOIUrl":"10.1007/s00269-024-01307-3","url":null,"abstract":"<div><p>Marialite (Na<sub>3</sub>Al<sub>3</sub>Si<sub>9</sub>O<sub>24</sub>·NaCl) represents a key end-member of the scapolite mineral group because it has the potential for revealing the chloride content of the paleofluid from which it formed. Here we provide measurements of the basic thermophysical properties of synthetic marialite which do not currently exist and which complement similar data for calcium-carbonate-bearing scapolites. Synthetic marialite was made from reagent oxides and NaCl treated at 1050 °C and 1.7 GPa for 48–120 h. Average unit-cell dimensions for synthetic marialite at 298 K and 1 atm are <i>a</i><sub>o</sub> = 12.038 ± 0.002 Å, <i>c</i><sub>o</sub> = 7.539 ± 0.004 Å, and <i>V</i><sub>o</sub> = 1092.6 ± 0.8 Å<sup>3</sup>, with a molar volume of 328.99 ± 0.24 cm<sup>3</sup>/mole. Thermal expansion measurements were made at 1 atm from 298–1105 K and showed that <i>a</i> increases while <i>c</i> decreases with an overall increase in volume upon heating. Compressibility measurements were made at room temperature in a diamond-anvil cell using 4:1 methanol: ethanol pressure medium in transmission mode at the Cornell High Energy Synchrotron Source facility with pressures ranging from 1 atm to 9.6 GPa. The <i>a</i> dimension is more compressible than <i>c</i> up to ~ 5 GPa, beyond which there is noticeable softening along the <i>c</i> axis. Equation of state modeling was done on the combined pressure–temperature-volume data using a Tait equation of state yielding bulk modulus and thermal expansion values for <i>K</i><sub>o</sub>, <i>K’</i>, and <i>α</i> of 51.0 ± 2.0 GPa, 6.68 ± 0.83, and 2.75 ± 0.17 × 10<sup>–5</sup>/K, respectively. Compared with other scapolite data in the literature, the marialite (Na<sub>3</sub>Al<sub>3</sub>Si<sub>9</sub>O<sub>24</sub>·NaCl)-meionite (Ca<sub>3</sub>Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>·CaCO<sub>3</sub>) join behaves similarly to the albite-anorthite plagioclase join, with end-member marialite having the highest thermal expansion and lowest bulk modulus along the compositional join.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1007/s00269-024-01308-2
Jaesung Lee, Yoongu Kang, In-Ho Jung

The phase diagram of the ZnO-SnO2 system at 800–1600 °C was experimentally investigated using the classical equilibration/quenching method and differential thermal analysis (DTA) followed by X-ray diffraction (XRD) phase analysis and electron probe micro-analysis (EPMA). Sealed platinum capsules were employed to prevent the evaporation of ZnO and SnO2 in the experiments. Based on new experimental phase diagram data and all available data in literatures, the binary ZnO-SnO2, SnO2-TiO2, and ZrO2-TiO2 and the ternary ZnO-SnO2-TiO2 system was thermodynamically optimized using the CALculation of PHAse Diagram (CALPHAD) method to prepare a set of Gibbs energies of all phases within the binary systems which can be utilized to predict unknown phase equilibria and thermodynamic properties in the system.

{"title":"Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system","authors":"Jaesung Lee,&nbsp;Yoongu Kang,&nbsp;In-Ho Jung","doi":"10.1007/s00269-024-01308-2","DOIUrl":"10.1007/s00269-024-01308-2","url":null,"abstract":"<div><p>The phase diagram of the ZnO-SnO<sub>2</sub> system at 800–1600 °C was experimentally investigated using the classical equilibration/quenching method and differential thermal analysis (DTA) followed by X-ray diffraction (XRD) phase analysis and electron probe micro-analysis (EPMA). Sealed platinum capsules were employed to prevent the evaporation of ZnO and SnO<sub>2</sub> in the experiments. Based on new experimental phase diagram data and all available data in literatures, the binary ZnO-SnO<sub>2</sub>, SnO<sub>2</sub>-TiO<sub>2</sub>, and ZrO<sub>2</sub>-TiO<sub>2</sub> and the ternary ZnO-SnO<sub>2</sub>-TiO<sub>2</sub> system was thermodynamically optimized using the CALculation of PHAse Diagram (CALPHAD) method to prepare a set of Gibbs energies of all phases within the binary systems which can be utilized to predict unknown phase equilibria and thermodynamic properties in the system.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundamentals on dependence of volume on pressure and temperature
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-27 DOI: 10.1007/s00269-024-01305-5
Zi-Kui Liu

The common wisdom that volume decreases with pressure and increases with temperature is analyzed in terms of Hillert nonequilibrium thermodynamics in the present work. It is shown that the derivative of volume to pressure in a stable system is always negative, i.e., volume decreases with the increase of pressure, when all other natural variables of the system are kept constant. This originates from the stability requirement that the conjugate variables, such as volume and negative pressure, must change in the same direction in a stable system. Consequently, since volume and temperature are not conjugate variables, they do not have to change in the same direction and thus do change in opposite directions in both natural and man-made systems. It is shown that the decrease of volume with the increase of temperature, commonly referred as negative thermal expansion (NTE) in the literature, originates from the statistical competitions of configurations in the system when the volumes of metastable configurations are smaller than that of the ground-state configuration. It is demonstrated that the zentropy theory can concisely explain and accurately predict NTE based on the density functional theory without fitting parameters.

{"title":"Fundamentals on dependence of volume on pressure and temperature","authors":"Zi-Kui Liu","doi":"10.1007/s00269-024-01305-5","DOIUrl":"10.1007/s00269-024-01305-5","url":null,"abstract":"<div><p>The common wisdom that volume decreases with pressure and increases with temperature is analyzed in terms of Hillert nonequilibrium thermodynamics in the present work. It is shown that the derivative of volume to pressure in a stable system is always negative, i.e., volume decreases with the increase of pressure, when all other natural variables of the system are kept constant. This originates from the stability requirement that the conjugate variables, such as volume and negative pressure, must change in the same direction in a stable system. Consequently, since volume and temperature are not conjugate variables, they do not have to change in the same direction and thus do change in opposite directions in both natural and man-made systems. It is shown that the decrease of volume with the increase of temperature, commonly referred as negative thermal expansion (NTE) in the literature, originates from the statistical competitions of configurations in the system when the volumes of metastable configurations are smaller than that of the ground-state configuration. It is demonstrated that the zentropy theory can concisely explain and accurately predict NTE based on the density functional theory without fitting parameters.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic modeling of the Mn–Si–O system
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-27 DOI: 10.1007/s00269-024-01302-8
D. A. de Abreu, O. Fabrichnaya

In this study, the thermodynamic parameters of the Mn–Si–O system were re-evaluated using the CALPHAD approach. Available experimental data on phase equilibria were taken into account and thermodynamic properties such as heat capacity, standard entropy and standard enthalpy were reproduced within uncertainties. Three ternary compounds are found to be stable in the Mn–Si–O system: rhodonite (MnSiO(_3)), braunite (Mn(_7)SiO(_{12})) and tephroite (Mn(_2)SiO(_4)). Braunite was modeled by CEF, while tephroite and rhodonite were modeled as stoichiometric compounds. Two-sublattice partially ionic liquid model was used to describe the liquid phase. The braunite phase exhibits a homogeneity range and can dissolve Mn(_2)O(_3) in some extension. Phase diagrams for the MnO–SiO(_2) system in the presence of metallic Mn and the MnO(_x)–SiO(_2) system in air were calculated and showed good agreement with existing literature data. The thermodynamic parameters were evaluated to describe the experimental data over the entire compositional range of the system.

{"title":"Thermodynamic modeling of the Mn–Si–O system","authors":"D. A. de Abreu,&nbsp;O. Fabrichnaya","doi":"10.1007/s00269-024-01302-8","DOIUrl":"10.1007/s00269-024-01302-8","url":null,"abstract":"<div><p>In this study, the thermodynamic parameters of the Mn–Si–O system were re-evaluated using the CALPHAD approach. Available experimental data on phase equilibria were taken into account and thermodynamic properties such as heat capacity, standard entropy and standard enthalpy were reproduced within uncertainties. Three ternary compounds are found to be stable in the Mn–Si–O system: rhodonite (MnSiO<span>(_3)</span>), braunite (Mn<span>(_7)</span>SiO<span>(_{12})</span>) and tephroite (Mn<span>(_2)</span>SiO<span>(_4)</span>). Braunite was modeled by CEF, while tephroite and rhodonite were modeled as stoichiometric compounds. Two-sublattice partially ionic liquid model was used to describe the liquid phase. The braunite phase exhibits a homogeneity range and can dissolve Mn<span>(_2)</span>O<span>(_3)</span> in some extension. Phase diagrams for the MnO–SiO<span>(_2)</span> system in the presence of metallic Mn and the MnO<span>(_x)</span>–SiO<span>(_2)</span> system in air were calculated and showed good agreement with existing literature data. The thermodynamic parameters were evaluated to describe the experimental data over the entire compositional range of the system.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01302-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-temperature thermodynamic properties of Y-doped barium zirconates, BaZr1–xYxO3−x/2 (x = 0.1, 0.2), with perovskite-type structure
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-12-19 DOI: 10.1007/s00269-024-01304-6
Dmitry S. Tsvetkov, Dmitry A. Malyshkin, Vladimir V. Sereda, Ivan L. Ivanov, Nadezhda S. Tsvetkova, Andrey Yu. Zuev

Perovskite-type oxides BaZr1–xYxO3−x/2 (x = 0.1, 0.2) were synthesized and their enthalpy increments were measured by means of high-temperature drop calorimetry in the temperature range of (373–1273) K in air. The data obtained were used for estimating the high-temperature thermodynamic functions (constant pressure heat capacity and entropy increments) of the zirconates BaZr1–xYxO3−x/2 (x = 0.1, 0.2). They were found to be only weakly dependent on the concentration of Y-dopant. Thermal expansion coefficient of zirconates BaZr1–xYxO3−x/2 (x = 0.1, 0.2) was successfully estimated by Grüneisen equation. Also, Neumann-Kopp rule was shown to be inapplicable for accurate estimation of heat capacities of the studied oxides. Thermodynamic analysis showed that BaZr1–xYxO3−x/2 (x = 0.1, 0.2) oxides are prone to chemical interaction with CO2 at typical working temperatures of proton-conducting solid oxide fuel cells. Some possibilities to overcome this issue have been discussed.

{"title":"High-temperature thermodynamic properties of Y-doped barium zirconates, BaZr1–xYxO3−x/2 (x = 0.1, 0.2), with perovskite-type structure","authors":"Dmitry S. Tsvetkov,&nbsp;Dmitry A. Malyshkin,&nbsp;Vladimir V. Sereda,&nbsp;Ivan L. Ivanov,&nbsp;Nadezhda S. Tsvetkova,&nbsp;Andrey Yu. Zuev","doi":"10.1007/s00269-024-01304-6","DOIUrl":"10.1007/s00269-024-01304-6","url":null,"abstract":"<div><p>Perovskite-type oxides BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2) were synthesized and their enthalpy increments were measured by means of high-temperature drop calorimetry in the temperature range of (373–1273) K in air. The data obtained were used for estimating the high-temperature thermodynamic functions (constant pressure heat capacity and entropy increments) of the zirconates BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2). They were found to be only weakly dependent on the concentration of Y-dopant. Thermal expansion coefficient of zirconates BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2) was successfully estimated by Grüneisen equation. Also, Neumann-Kopp rule was shown to be inapplicable for accurate estimation of heat capacities of the studied oxides. Thermodynamic analysis showed that BaZr<sub>1–<i>x</i></sub>Y<sub><i>x</i></sub>O<sub>3−x/2</sub> (<i>x</i> = 0.1, 0.2) oxides are prone to chemical interaction with CO<sub>2</sub> at typical working temperatures of proton-conducting solid oxide fuel cells. Some possibilities to overcome this issue have been discussed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-dependent infrared spectroscopy of OH defects in Verneuil-grown corundum (α-Al2O3) 凡尔乃尔生长刚玉(α-Al2O3)中 OH 缺陷的温度依赖性红外光谱分析
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-17 DOI: 10.1007/s00269-024-01301-9
Etienne Balan, Michael C. Jollands, Maxime Guillaumet, Keevin Béneut

The temperature dependence of the infrared absorption spectra of two Verneuil-grown corundum samples is investigated in the OH stretching range. The spectra display three main bands at 3184, 3232 and 3309 cm− 1, belonging to the so-called “3309 cm− 1 series”, as well as two additional bands at 3163 and 3278 cm− 1 previously reported in some synthetic corundum samples. The anharmonic behavior of the observed bands is analyzed using the pure dephasing model of Persson and Ryberg and depends on the local geometry of the OH defects, which are all associated with Al vacancies. The unexpected increase with temperature in the absorbance of a weak band at 3209 cm− 1 supports a revised interpretation of both the 3209 and 3232 cm− 1 bands. These two bands are interpreted as resulting from the low-temperature equilibrium between two Ti-associated OH defects, enabled by the possibility of hydrogen hopping within the Al vacancy. The temperature-dependent properties of the 3278 cm− 1 band are similar to those of the other Al-vacancy related defects and a comparison with the theoretical properties of selected OH defects suggests that this band corresponds to the association of the H atom with a non-dissociated Al Frenkel pair. Finally, the properties of the band at 3163 cm− 1 are consistent with its previously proposed association with Si for Al substitution in corundum.

研究了两种凡尔乃尔生长刚玉样品在羟基伸展范围内的红外吸收光谱的温度依赖性。光谱显示了位于 3184、3232 和 3309 cm- 1 的三个主要波段(属于所谓的 "3309 cm- 1 系列"),以及之前在一些合成刚玉样品中报道的位于 3163 和 3278 cm- 1 的两个附加波段。利用佩尔松和雷贝格的纯去相模型分析了观察到的条带的非谐波行为,该行为取决于羟基缺陷的局部几何形状,这些缺陷都与铝空位有关。随着温度的升高,3209 cm- 1 处弱带的吸光度意外增加,这支持了对 3209 和 3232 cm- 1 带的修正解释。这两条带被解释为两个与 Ti- 相关的 OH 缺陷之间的低温平衡所产生的,而 Al 空位内部可能存在氢跳变。3278 cm- 1 带随温度变化的特性与其他与铝空位有关的缺陷的特性相似,与所选 OH 缺陷的理论特性比较表明,该带与 H 原子与非解离的 Al Frenkel 对的结合相对应。最后,3163 cm- 1 波段的性质与之前提出的刚玉中的铝置换与硅的关联是一致的。
{"title":"Temperature-dependent infrared spectroscopy of OH defects in Verneuil-grown corundum (α-Al2O3)","authors":"Etienne Balan,&nbsp;Michael C. Jollands,&nbsp;Maxime Guillaumet,&nbsp;Keevin Béneut","doi":"10.1007/s00269-024-01301-9","DOIUrl":"10.1007/s00269-024-01301-9","url":null,"abstract":"<div><p>The temperature dependence of the infrared absorption spectra of two Verneuil-grown corundum samples is investigated in the OH stretching range. The spectra display three main bands at 3184, 3232 and 3309 cm<sup>− 1</sup>, belonging to the so-called “3309 cm<sup>− 1</sup> series”, as well as two additional bands at 3163 and 3278 cm<sup>− 1</sup> previously reported in some synthetic corundum samples. The anharmonic behavior of the observed bands is analyzed using the pure dephasing model of Persson and Ryberg and depends on the local geometry of the OH defects, which are all associated with Al vacancies. The unexpected increase with temperature in the absorbance of a weak band at 3209 cm<sup>− 1</sup> supports a revised interpretation of both the 3209 and 3232 cm<sup>− 1</sup> bands. These two bands are interpreted as resulting from the low-temperature equilibrium between two Ti-associated OH defects, enabled by the possibility of hydrogen hopping within the Al vacancy. The temperature-dependent properties of the 3278 cm<sup>− 1</sup> band are similar to those of the other Al-vacancy related defects and a comparison with the theoretical properties of selected OH defects suggests that this band corresponds to the association of the H atom with a non-dissociated Al Frenkel pair. Finally, the properties of the band at 3163 cm<sup>− 1</sup> are consistent with its previously proposed association with Si for Al substitution in corundum.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA 800 °C 和 200 MPA 下 NaF 流体中铂与含锑化合物的相互作用
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-28 DOI: 10.1007/s00269-024-01299-0
Alexander F. Redkin, Andrey M. Ionov, Alexey N. Nekrasov, Andrey D. Podobrazhnykh, Rais N. Mozhchil

Studies conducted in NaF-containing hydrothermal fluids have shown that the oxide compounds Sb5+ are unstable at 800 °C, Рtotal = 200 MPa and fO2 (fH2) specified by Co–CoO and Ni–NiO buffers interact with the Pt material of the ampoule, forming antimony intermetallics with platinum on the inner surface of the ampoule. The formation of the following intermetallics was established through the analysis of data obtained from studies conducted on an electronic microscope: Pt90.3±0.8Sb9.7 (~ Pt10Sb), Pt82.8±1.3Sb17.2 (~ Pt5Sb) and Pt69.2±4.4Sb30.8. Pt10Sb compound which was obtained on the inner surface of the Pt ampoule is the limiting solid solution of antimony in platinum at 800 °C. It exhibits a cubic crystal system (Fmoverline{3}m) with a lattice constant of a = 3.943(3) Å and forms an underdeveloped surface < 111>. Pt5Sb compound, presumably hexagonal P6/mmm crystal system with unit cell parameters a = b = 4.56(4), c = 4.229(2) Å, α = β = 90°, γ = 120°, forms a thin film (≤ 10 μm) on the Pt surface and appears to be a metastable phase. The intermetallic compound of Pt69Sb31 is a rapidly cooled melt of appropriate composition.

A mechanism for deep penetration of Sb into the walls of the Pt ampoule is proposed.

在含 NaF 的热液中进行的研究表明,氧化物 Sb5+ 在 800 ℃、Рtotal = 200 MPa 和 Co-CoO 和 Ni-NiO 缓冲剂规定的 fO2(fH2)条件下不稳定,会与安瓿的铂材料相互作用,在安瓿内表面与铂形成锑金属间化合物。通过分析电子显微镜研究获得的数据,确定形成了以下金属间化合物:Pt90.3±0.8Sb9.7(~ Pt10Sb)、Pt82.8±1.3Sb17.2(~ Pt5Sb)和 Pt69.2±4.4Sb30.8。在铂安瓿内表面获得的 Pt10Sb 化合物是铂中锑在 800 °C 时的极限固溶体。它呈现出晶格常数为 a = 3.943(3) Å 的立方晶系(Fm/overline{3}m/),并形成一个不发达的表面 <111>。Pt5Sb 化合物推测为六方 P6/mmm 晶系,单胞参数 a = b = 4.56(4),c = 4.229(2)埃,α = β = 90°,γ = 120°,在铂表面形成一层薄膜(≤ 10 μm),似乎是一种可转移相。Pt69Sb31 金属间化合物是一种具有适当成分的快速冷却熔体。
{"title":"Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA","authors":"Alexander F. Redkin,&nbsp;Andrey M. Ionov,&nbsp;Alexey N. Nekrasov,&nbsp;Andrey D. Podobrazhnykh,&nbsp;Rais N. Mozhchil","doi":"10.1007/s00269-024-01299-0","DOIUrl":"10.1007/s00269-024-01299-0","url":null,"abstract":"<div><p>Studies conducted in NaF-containing hydrothermal fluids have shown that the oxide compounds Sb<sup>5+</sup> are unstable at 800 °C, <i>Р</i><sub>total</sub> = 200 MPa and <i>f</i>O<sub>2</sub> (<i>f</i>H<sub>2</sub>) specified by Co–CoO and Ni–NiO buffers interact with the Pt material of the ampoule, forming antimony intermetallics with platinum on the inner surface of the ampoule. The formation of the following intermetallics was established through the analysis of data obtained from studies conducted on an electronic microscope: Pt<sub>90.3±0.8</sub>Sb<sub>9.7</sub> (~ Pt<sub>10</sub>Sb), Pt<sub>82.8±1.3</sub>Sb<sub>17.2</sub> (~ Pt<sub>5</sub>Sb) and Pt<sub>69.2±4.4</sub>Sb<sub>30.8</sub>. Pt<sub>10</sub>Sb compound which was obtained on the inner surface of the Pt ampoule is the limiting solid solution of antimony in platinum at 800 °C. It exhibits a cubic crystal system <span>(Fmoverline{3}m)</span> with a lattice constant of <i>a</i> = 3.943(3) Å and forms an underdeveloped surface &lt; 111&gt;. Pt<sub>5</sub>Sb compound, presumably hexagonal <i>P</i>6/<i>mmm</i> crystal system with unit cell parameters <i>a</i> = <i>b</i> = 4.56(4), <i>c</i> = 4.229(2) Å, <i>α</i> = <i>β</i> = 90°, <i>γ</i> = 120°, forms a thin film (≤ 10 μm) on the Pt surface and appears to be a metastable phase. The intermetallic compound of Pt<sub>69</sub>Sb<sub>31</sub> is a rapidly cooled melt of appropriate composition.</p><p>A mechanism for deep penetration of Sb into the walls of the Pt ampoule is proposed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-pressure synthesis of rhenium carbide Re3C under megabar compression 在兆巴压缩条件下高压合成碳化铼 Re3C
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-26 DOI: 10.1007/s00269-024-01300-w
Yuqing Yin, Leonid Dubrovinsky, Andrey Aslandukov, Alena Aslandukova, Timofey Fedotenko, Konstantin Glazyrin, Gaston Garbarino, Igor A. Abrikosov, Natalia Dubrovinskaia

The rhenium carbide Re3C was predicted to be stable under high pressure and expected to have high hardness and low compressibility. In this study, we realise the synthesis of Re3C at megabar pressures of 105(3) and 140(5) GPa in laser-heated diamond anvil cells and characterise its structure using synchrotron single-crystal X-ray diffraction. The structure of Re3C has the monoclinic space group C2/m and is built of CRe7 capped octahedra. Our combined ab initio calculations and quantitative topological analysis support experimental structural data and further deepen the understanding of the chemical bonding in the newly synthesized compound.

据预测,碳化铼 Re3C 在高压下是稳定的,并且具有高硬度和低可压缩性。在本研究中,我们实现了在 105(3) 和 140(5) GPa 的兆帕压力下,在激光加热的金刚石砧单元中合成 Re3C,并利用同步辐射单晶 X 射线衍射对其结构进行了表征。Re3C 的结构具有单斜空间群 C2/m,由 CRe7 冠八面体构成。我们的综合 ab initio 计算和定量拓扑分析为实验结构数据提供了支持,并进一步加深了对新合成化合物化学键的理解。
{"title":"High-pressure synthesis of rhenium carbide Re3C under megabar compression","authors":"Yuqing Yin,&nbsp;Leonid Dubrovinsky,&nbsp;Andrey Aslandukov,&nbsp;Alena Aslandukova,&nbsp;Timofey Fedotenko,&nbsp;Konstantin Glazyrin,&nbsp;Gaston Garbarino,&nbsp;Igor A. Abrikosov,&nbsp;Natalia Dubrovinskaia","doi":"10.1007/s00269-024-01300-w","DOIUrl":"10.1007/s00269-024-01300-w","url":null,"abstract":"<div><p>The rhenium carbide Re<sub>3</sub>C was predicted to be stable under high pressure and expected to have high hardness and low compressibility. In this study, we realise the synthesis of Re<sub>3</sub>C at megabar pressures of 105(3) and 140(5) GPa in laser-heated diamond anvil cells and characterise its structure using synchrotron single-crystal X-ray diffraction. The structure of Re<sub>3</sub>C has the monoclinic space group <i>C</i>2/<i>m</i> and is built of CRe<sub>7</sub> capped octahedra. Our combined ab initio calculations and quantitative topological analysis support experimental structural data and further deepen the understanding of the chemical bonding in the newly synthesized compound.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01300-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems 利用柔性二氧化碳激光加热系统对火烧云单晶进行高压和高温布里渊散射测量
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1007/s00269-024-01297-2
A. Kurnosov, G. Criniti, T. Boffa Ballaran, H. Marquardt, D. J. Frost

Single-crystal Brillouin scattering measurements are important for interpreting seismic velocities within the Earth and other planetary interiors. These measurements are rare, however, at temperatures above 1000 K, due to the fact that the transparent samples cannot be heated by common laser heating systems operating at a wavelength on the order of 1 μm. Here we present Brillouin scattering data on pyrope collected at pressures up to 23.8 GPa and temperatures between 850 and 1900 K using a novel CO2 laser heating system confined in either a flexible hollow silica waveguide or an articulated arm with mirrors mounted in each junction to direct the laser to the exit point. Pyrope has been chosen because it has been extensively studied at high pressures and moderate temperatures and therefore it is an excellent sample for bench-marking the CO2 laser heating system. The new high-temperature velocity data collected in this study allow the room pressure thermal parameters of pyrope to be constrained more tightly, resulting in values that reproduce the temperature dependence of the unit-cell volume of pyrope measured in recent studies at ambient pressure. Aggregate wave velocities of pyrope calculated along an adiabat using the thermoelastic parameters determined in this study are larger than those obtained using published values, implying that velocities for many mantle components may be underestimated at mantle temperatures because high temperature experimental data are lacking.

单晶布里渊散射测量对于解释地球和其他行星内部的地震速度非常重要。然而,在 1000 K 以上的温度条件下,这种测量非常罕见,原因是波长为 1 μm 的普通激光加热系统无法对透明样品进行加热。在这里,我们展示了在压力高达 23.8 GPa、温度介于 850 至 1900 K 之间的条件下,使用新型 CO2 激光加热系统收集到的焦红的布里渊散射数据,该系统被限制在一个灵活的空心硅波导或一个铰接臂中,铰接臂的每个结点都安装了反射镜,以便将激光引导到出口点。之所以选择焦岩,是因为对它进行了大量的高压和中温研究,因此它是二氧化碳激光加热系统的绝佳样品。本研究中收集的新高温速度数据可以更严格地限制火绳草的室压热参数,从而得出的数值再现了最近的研究中在环境压力下测得的火绳草单位晶胞体积的温度依赖性。利用本研究确定的热弹性参数沿绝热线计算出的辉绿岩总波速大于利用已公布值计算出的波速,这意味着由于缺乏高温实验数据,许多地幔成分在地幔温度下的波速可能被低估了。
{"title":"High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems","authors":"A. Kurnosov,&nbsp;G. Criniti,&nbsp;T. Boffa Ballaran,&nbsp;H. Marquardt,&nbsp;D. J. Frost","doi":"10.1007/s00269-024-01297-2","DOIUrl":"10.1007/s00269-024-01297-2","url":null,"abstract":"<div><p>Single-crystal Brillouin scattering measurements are important for interpreting seismic velocities within the Earth and other planetary interiors. These measurements are rare, however, at temperatures above 1000 K, due to the fact that the transparent samples cannot be heated by common laser heating systems operating at a wavelength on the order of 1 μm. Here we present Brillouin scattering data on pyrope collected at pressures up to 23.8 GPa and temperatures between 850 and 1900 K using a novel CO<sub>2</sub> laser heating system confined in either a flexible hollow silica waveguide or an articulated arm with mirrors mounted in each junction to direct the laser to the exit point. Pyrope has been chosen because it has been extensively studied at high pressures and moderate temperatures and therefore it is an excellent sample for bench-marking the CO<sub>2</sub> laser heating system. The new high-temperature velocity data collected in this study allow the room pressure thermal parameters of pyrope to be constrained more tightly, resulting in values that reproduce the temperature dependence of the unit-cell volume of pyrope measured in recent studies at ambient pressure. Aggregate wave velocities of pyrope calculated along an adiabat using the thermoelastic parameters determined in this study are larger than those obtained using published values, implying that velocities for many mantle components may be underestimated at mantle temperatures because high temperature experimental data are lacking.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01297-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution α-FeOOH (goethite)-ScOOH 固溶体的热力学
IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-10-02 DOI: 10.1007/s00269-024-01298-1
Juraj Majzlan

Scandium (Sc) is a rare element that finds uses in modern technologies. Thermodynamic properties of Sc phases could help in the development of innovative technologies to extract Sc from mining waste. In this work, we investigated the FeOOH–ScOOH solid solution with the goethite structure. The end members and five intermediate compositions were synthesized and characterized. The lattice parameters show that the solid solution is non-ideal, with complex behavior induced by the Fe–Sc substitution. The excess unit-cell volume deviates negatively for the Sc-rich region, and positively for the Fe-rich region from the ideal behavior (Vegard’s law). Enthalpies of dissolution were determined by acid-solution calorimetry in 5 mol(cdot hbox {dm}^{-3}) HCl at T = 343.15 K. Enthalpies of mixing ((Delta _{mix}H)), calculated from the experimental data, are small and positive. The available data allow for fitting the data as (Delta _{mix}H = W x (1-x)), with the mixing parameter (W = 15.2pm)1.0 kJ(cdot hbox {mol}^{-1}). Using (Delta _fG^o) of ScOOH from earlier literature, we calculated a Lippmann diagram that shows that Sc should strongly partition into the aqueous phase upon goethite precipitation. The field observations from lateritic profiles show that Sc is primarily harbored by goethite via adsorption. It seems that under weathering conditions, thermodynamically driven partitioning of (hbox {Sc}^{3+}) into the aqueous phases and its subsequent adsorption onto goethite surfaces controls the mobility of Sc in the weathering profiles.

钪(Sc)是一种稀有元素,可用于现代技术。钪相的热力学性质有助于开发从采矿废料中提取钪的创新技术。在这项工作中,我们研究了具有网闪石结构的 FeOOH-ScOOH 固溶体。我们合成并表征了最终成分和五种中间成分。晶格参数表明,该固溶体是非理想的,Fe-Sc置换引起了复杂的行为。与理想行为(维加定律)相比,富含钪区域的过剩单胞体积呈负偏离,富含铁区域的过剩单胞体积呈正偏离。根据实验数据计算出的混合焓((Delta _{mix}H))很小且为正值。根据现有数据,可以拟合数据为(Δ _{mix}H=W x (1-x)),混合参数为(W = 15.2pm)1.0 kJ(cdot hbox {mol}^{-1})。利用早期文献中 ScOOH 的 (Delta _fG^o),我们计算出了一个 Lippmann 图,该图显示,Sc 应在网纹石沉淀后强烈地分出到水相中。从红土剖面的实地观测结果表明,Sc 主要是通过吸附作用被网纹石吸附的。看来,在风化条件下,热力学驱动的(hbox {Sc}^{3+})向水相的分配及其随后在鹅绿泥石表面的吸附控制了Sc在风化剖面中的流动性。
{"title":"Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution","authors":"Juraj Majzlan","doi":"10.1007/s00269-024-01298-1","DOIUrl":"10.1007/s00269-024-01298-1","url":null,"abstract":"<div><p>Scandium (Sc) is a rare element that finds uses in modern technologies. Thermodynamic properties of Sc phases could help in the development of innovative technologies to extract Sc from mining waste. In this work, we investigated the FeOOH–ScOOH solid solution with the goethite structure. The end members and five intermediate compositions were synthesized and characterized. The lattice parameters show that the solid solution is non-ideal, with complex behavior induced by the Fe–Sc substitution. The excess unit-cell volume deviates negatively for the Sc-rich region, and positively for the Fe-rich region from the ideal behavior (Vegard’s law). Enthalpies of dissolution were determined by acid-solution calorimetry in 5 mol<span>(cdot hbox {dm}^{-3})</span> HCl at <i>T</i> = 343.15 K. Enthalpies of mixing (<span>(Delta _{mix}H)</span>), calculated from the experimental data, are small and positive. The available data allow for fitting the data as <span>(Delta _{mix}H = W x (1-x))</span>, with the mixing parameter <span>(W = 15.2pm)</span>1.0 kJ<span>(cdot hbox {mol}^{-1})</span>. Using <span>(Delta _fG^o)</span> of ScOOH from earlier literature, we calculated a Lippmann diagram that shows that Sc should strongly partition into the aqueous phase upon goethite precipitation. The field observations from lateritic profiles show that Sc is primarily harbored by goethite <i>via</i> adsorption. It seems that under weathering conditions, thermodynamically driven partitioning of <span>(hbox {Sc}^{3+})</span> into the aqueous phases and its subsequent adsorption onto goethite surfaces controls the mobility of Sc in the weathering profiles.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01298-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics and Chemistry of Minerals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1