Bending behavior of structured steel sheets with undercuts for interlocking with Al die-cast metal

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-11-09 DOI:10.1007/s12289-023-01797-6
Aron Ringel, Gerhard Hirt
{"title":"Bending behavior of structured steel sheets with undercuts for interlocking with Al die-cast metal","authors":"Aron Ringel,&nbsp;Gerhard Hirt","doi":"10.1007/s12289-023-01797-6","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the current changes in mobility, lightweight design concepts continue to be of particular interest to the automotive industry. One form is the multi-material design, in which the advantageous properties of different materials are combined in one component. In this work, a component made of a steel sheet with stiffening structures of cast aluminum is considered. The joint is created by channel structures with undercuts on the surface of the steel sheet, into which the molten aluminum can flow. After solidification, an interlocking connection is created. The aim of this work is to investigate the influence of a bending operation on the surface structure before the die casting process. Numerical simulations and experimental validations were performed with different bending angles and radii as well as orientations between the channel structure and the punch. The results show that the undercuts on the outer radius are reduced by up to 75% by the bending operation, thus weakening the resulting joint. On the inner radius, the channel opening width narrows by up to 73% and can thus impede the filling with the melt.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01797-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01797-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the current changes in mobility, lightweight design concepts continue to be of particular interest to the automotive industry. One form is the multi-material design, in which the advantageous properties of different materials are combined in one component. In this work, a component made of a steel sheet with stiffening structures of cast aluminum is considered. The joint is created by channel structures with undercuts on the surface of the steel sheet, into which the molten aluminum can flow. After solidification, an interlocking connection is created. The aim of this work is to investigate the influence of a bending operation on the surface structure before the die casting process. Numerical simulations and experimental validations were performed with different bending angles and radii as well as orientations between the channel structure and the punch. The results show that the undercuts on the outer radius are reduced by up to 75% by the bending operation, thus weakening the resulting joint. On the inner radius, the channel opening width narrows by up to 73% and can thus impede the filling with the melt.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与铝压铸金属联锁用带凹口的结构钢薄板的弯曲性能
由于当前移动出行的变化,轻量化设计概念继续是特别感兴趣的汽车行业。一种形式是多材料设计,在这种设计中,不同材料的优点被组合在一个组件中。在这项工作中,考虑了一个由钢板与铸铝加强结构组成的部件。接头是由在钢板表面有凹口的沟道结构形成的,熔融铝可以流入其中。凝固后,形成一个联锁连接。本工作的目的是研究压铸过程前弯曲操作对表面结构的影响。数值模拟和实验验证了不同弯曲角度、半径和方向的通道结构与冲床。结果表明,弯曲操作使外半径上的凹痕减少了75%,从而削弱了接头。在内半径上,通道开口宽度缩小了73%,从而阻碍了熔体的填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1