Influence of the deformation sequence on the shape accuracy of multi-point forming

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-10-13 DOI:10.1007/s12289-023-01790-z
Bin-Bin Jia, Yan Shen, Yanxia Gu
{"title":"Influence of the deformation sequence on the shape accuracy of multi-point forming","authors":"Bin-Bin Jia,&nbsp;Yan Shen,&nbsp;Yanxia Gu","doi":"10.1007/s12289-023-01790-z","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-point forming with individually controlled force–displacement (MPF-ICFD) is a novel multi-point forming process with characteristics of good deformation uniformity and high forming accuracy. The process has two different deformation sequences: positive forming (PF) and negative forming (NF). The shape accuracy of a part is significantly different when the deformation order is changed. To reveal the influence mechanism of the deformation sequence on shape accuracy, experiments and numerical simulations are used to assess shape accuracy during multi-point forming. The deformation behaviours of a cylindrical surface, sail surface and saddle surface in PF and NF processes are investigated to obtain the shape accuracy characteristics of a sheet under different deformation sequences. In addition, the strain distribution characteristics of the cylindrical surface are given quantitatively. The influence mechanism of the deformation sequence on the shape accuracy is revealed. The results show that the amount of plastic deformation on the part is significantly increased and the shape accuracy is significantly improved during the PF process. When the loading conditions are identical, the maximum strain of the cylindrical parts is increased by 73.4%, and the amount of springback is decreased by 90.0%. The above research indicates that the PF process has good application prospects in sheet metal forming.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01790-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-point forming with individually controlled force–displacement (MPF-ICFD) is a novel multi-point forming process with characteristics of good deformation uniformity and high forming accuracy. The process has two different deformation sequences: positive forming (PF) and negative forming (NF). The shape accuracy of a part is significantly different when the deformation order is changed. To reveal the influence mechanism of the deformation sequence on shape accuracy, experiments and numerical simulations are used to assess shape accuracy during multi-point forming. The deformation behaviours of a cylindrical surface, sail surface and saddle surface in PF and NF processes are investigated to obtain the shape accuracy characteristics of a sheet under different deformation sequences. In addition, the strain distribution characteristics of the cylindrical surface are given quantitatively. The influence mechanism of the deformation sequence on the shape accuracy is revealed. The results show that the amount of plastic deformation on the part is significantly increased and the shape accuracy is significantly improved during the PF process. When the loading conditions are identical, the maximum strain of the cylindrical parts is increased by 73.4%, and the amount of springback is decreased by 90.0%. The above research indicates that the PF process has good application prospects in sheet metal forming.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变形顺序对多点成形形状精度的影响
多点控制力-位移成形(MPF-ICFD)是一种新颖的多点成形工艺,具有变形均匀性好、成形精度高等特点。该过程有两种不同的变形顺序:正成形(PF)和负成形(NF)。当变形顺序发生变化时,零件的形状精度有很大的不同。为了揭示变形顺序对成形精度的影响机理,采用实验和数值模拟的方法对多点成形过程中的成形精度进行了评估。研究了圆柱面、帆形面和鞍形面在PF和NF过程中的变形行为,获得了板材在不同变形顺序下的形状精度特征。此外,定量地给出了圆柱表面的应变分布特征。揭示了变形顺序对形状精度的影响机理。结果表明:在PF工艺过程中,零件的塑性变形量显著增加,形状精度显著提高。在相同的加载条件下,圆柱件的最大应变提高了73.4%,回弹量减少了90.0%。上述研究表明,PF工艺在板料成形中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
Sheet metal forming processes: Development of an innovative methodology for the integration of the metal forming and structural analysis Subscale modeling of material flow in orthogonal metal cutting Hot stamping of ultra-thin titanium sheets: mechanical properties, fracture limit and process verification Experimental and numerical analysis of deformation and residual stress produced by stressing ultrasonic impact forming (SUIF) Effects of geometric parameters of screw type blind rivet joints on large blind head formation and pre-load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1