Source and Generation Parameters of the Granitoid Melts of the Archean Charnockite–Enderbite Complex in Karelia, with Reference to the Pon’goma-Navolok Massif

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemistry International Pub Date : 2023-11-15 DOI:10.1134/S0016702923090069
V. M. Kozlovskii, E. B. Kurdyukov, M. A. Yakushik, V. V. Travin, T. F. Zinger, A. I. Yakushev, M. M. Fugzan, T. I. Kirnozova, S. A. Ushakova
{"title":"Source and Generation Parameters of the Granitoid Melts of the Archean Charnockite–Enderbite Complex in Karelia, with Reference to the Pon’goma-Navolok Massif","authors":"V. M. Kozlovskii,&nbsp;E. B. Kurdyukov,&nbsp;M. A. Yakushik,&nbsp;V. V. Travin,&nbsp;T. F. Zinger,&nbsp;A. I. Yakushev,&nbsp;M. M. Fugzan,&nbsp;T. I. Kirnozova,&nbsp;S. A. Ushakova","doi":"10.1134/S0016702923090069","DOIUrl":null,"url":null,"abstract":"<p>The paper presents authors’ original detailed data on rocks of the Archean Pon’goma-Navolok charnockite−enderbite complex in northern Karelia. The rocks practically have not been modified and are preserved within a rigid block among Paleoproterozoic zones of ductile deformations and metamorphism. The geochemistry of the rocks and their isotope−geochemical features indicate that the protolith from which the enderbite melts of the main phase of the massif were derived may have been amphibolites. The enderbite melts were derived from these amphibolites under the effect of K<sub>2</sub>O-, Na<sub>2</sub>O-, and SiO<sub>2</sub>-bearing fluids; and the enderbites were subsequently charnockitized with the involvement of fluids enriched in K<sub>2</sub>O and SiO<sub>2</sub>. Physicochemical modeling indicates that the enderbite melt was derived from the amphibolite protolith at a depth of about 45 km (<i>P</i> = 14.8 kbar, <i>T</i> = 1030−1080°C) under the effect of saline H<sub>2</sub>O−CO<sub>2</sub> fluid. Comparison of the <i>P</i>−<i>T</i> parameters of the granulite-facies metamorphism of the metabasites and the parameters under which the enderbite melts were derived indicates that Archean granulite-facies metamorphism in the Belomorian belt in northern Karelia was of contact but not regional nature and was induced by the high-temperature field of an emplaced enderbite massif. The orthogneisses hosting the Pan’goma-Navolok massif inherit geochemical features of the unsheared, ungneissose, and unmetamorphosed enderbites. This means that enderbites analogous to those of the Pan’goma-Navolok massif may have served as the protolith of some of the orthogneisses, and that enderbites may have been spread more widely in the Archean than the currently preserved single enderbite massifs.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"61 11","pages":"1109 - 1127"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702923090069.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702923090069","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents authors’ original detailed data on rocks of the Archean Pon’goma-Navolok charnockite−enderbite complex in northern Karelia. The rocks practically have not been modified and are preserved within a rigid block among Paleoproterozoic zones of ductile deformations and metamorphism. The geochemistry of the rocks and their isotope−geochemical features indicate that the protolith from which the enderbite melts of the main phase of the massif were derived may have been amphibolites. The enderbite melts were derived from these amphibolites under the effect of K2O-, Na2O-, and SiO2-bearing fluids; and the enderbites were subsequently charnockitized with the involvement of fluids enriched in K2O and SiO2. Physicochemical modeling indicates that the enderbite melt was derived from the amphibolite protolith at a depth of about 45 km (P = 14.8 kbar, T = 1030−1080°C) under the effect of saline H2O−CO2 fluid. Comparison of the PT parameters of the granulite-facies metamorphism of the metabasites and the parameters under which the enderbite melts were derived indicates that Archean granulite-facies metamorphism in the Belomorian belt in northern Karelia was of contact but not regional nature and was induced by the high-temperature field of an emplaced enderbite massif. The orthogneisses hosting the Pan’goma-Navolok massif inherit geochemical features of the unsheared, ungneissose, and unmetamorphosed enderbites. This means that enderbites analogous to those of the Pan’goma-Navolok massif may have served as the protolith of some of the orthogneisses, and that enderbites may have been spread more widely in the Archean than the currently preserved single enderbite massifs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡累利阿太古界charnokite - enderbite杂岩花岗岩熔体来源及成因参数——以Pon ' gama - navolok地块为例
本文介绍了作者对卡累利阿北部太古宙Pon’goma- navolok charnockite - enderite杂岩的原始详细资料。这些岩石几乎没有被改造过,保存在古元古代韧性变形和变质带中的一个刚性块体中。岩石的地球化学特征及其同位素地球化学特征表明,该地块主相隐长岩熔体的原岩可能为角闪岩。角闪岩熔体是在含K2O-、Na2O-和sio2流体作用下形成的;在富含K2O和SiO2的流体的作用下,煤泥被炭化。物理化学模拟表明,深约45 km (P = 14.8 kbar, T = 1030 ~ 1080℃)角闪岩原岩是由含盐的H2O ~ CO2流体作用下形成的。变质岩的麻粒岩相变质作用的P−T参数与得出麻粒岩熔体的参数的比较表明,卡累利阿北部Belomorian带太古代麻粒岩相变质作用是接触性的,而不是区域性的,是由侵位麻粒岩地块的高温场诱发的。潘古马—纳沃洛克地块的正长岩继承了未剪切、不长岩和未变质岩的地球化学特征。这意味着与潘古马-纳沃洛克地块相似的隐长岩可能是某些正长岩的原岩,并且隐长岩在太古宙的分布可能比目前保存的单一隐长岩更广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry International
Geochemistry International 地学-地球化学与地球物理
CiteScore
1.60
自引率
12.50%
发文量
89
审稿时长
1 months
期刊介绍: Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Gas Composition of Fluids That Formed Ore Deposits over Geological Time: from the Archean through Cenozoic Kichany Structure of the Archean Tiksheozero Greenstone Belt of the Fennoscandian: Evidence from New Geochemical and Geochronological Data Orogenic Gold Deposits of Northern Transbaikalia, Russia: Geology, Age, Sources, and Genesis Dissolution of Ta–Nb and Nb Minerals in Granitoid Melts Trends in Some Geochemical Parameters of Fine-Grained Clastic Rocks of Lower Riphean Sedimentary Sequences in the Northeastern and Central Parts of the Bashkirian Meganticlinorium, Southern Urals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1