首页 > 最新文献

Geochemistry International最新文献

英文 中文
Experimental Determination of PdS(cr) Solubility in Sulfide Fluids to 490°C, 1000 bar. Thermodynamic Properties of (Hydro)Sulfide Complexes of Palladium and Platinum PdS(cr)在490°C, 1000 bar的硫化物流体中溶解度的实验测定。钯和铂(氢)硫化配合物的热力学性质
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925601123
E. A. Rubtsova, B. R. Tagirov, M. E. Tarnopolskaia, I. Y. Nikolaeva, I. Yu. Zlivko, V. A. Volchenkova, N. N. Akinfiev, V. L. Reukov, D. A. Chareev, A. V. Zotov

The solubility of vysotskite PdS(cr) was measured in aqueous sulfide solutions from 4.5 to 490°C at 1–1000 bar as a function of pH. The total reduced sulfur concentrations varied between 0.03 and 106 m [mol (kg H2O)–1]. The solubility data were described in terms of the aqueous complexes Pd(HS)2(aq), ({text{Pd(HS}})_{3}^{ - }), and ({text{PdS(HS}})_{2}^{{2 - }}). The 1st complex dominates in acidic to near-neutral solutions, the 2nd complex in neutral to alkaline pH, and the 3rd one under alkaline pH conditions. The PdS(cr) solubility constants show a minimum at 200°C (Pd(HS)2(aq), ({text{PdS(HS}})_{2}^{{2 - }})) and 350°C (({text{Pd(HS}})_{3}^{ - })). The experimental values pooled with reliable literature data, were fitted to the HKF (Helgeson–Kirkham–Flowers) model equation of state (EoS). Literature data on the solubility of cooperite PtS(cr) were regressed to calculate of the HKF EoS parameters of Pt(HS)2(aq) and ({text{Pt(HS}})_{3}^{ - }), the 3rd complex was not detected for Pt. The PtS(cr) solubility constant to form the main Pt hydrosulfide complex, Pt(HS)2(aq), shows a pronounced minimum at 100°C and then increases sharply, whereas the ({text{Pt(HS}})_{3}^{ - }) formation constant has a maximum at 250°C. At ambient temperature, the solubility of PdS(cr) exceeds that of PtS(cr) by 2–3 log units, depending on pH. The temperature of ca. 250°C is a borderline one where the solubilities of Pd and Pt sulfides are equal. At temperature above 300°C, due to the sharp increase in the Pt(HS)2(aq) formation constant, the dissolved Pt concentration exceeds that of Pd in the whole pH region from acidic to alkaline. At 700°C and 2000 bar, the solubility of PtS(cr) reaches a few ppm, whereas the solubility of PdS(cr) comprises about 40 ppb in a solution containing 0.1 m total reduced sulfur. These concentrations are high enough to sustain hydrothermal mobility of these metals in high-temperature magmatic-hydrothermal fluids, whereas the differences in the stability of Pt(HS)2(aq) and Pd(HS)2(aq) can result in separation of these metals in hydrothermal systems.

在4.5 ~ 490℃、1 ~ 1000 bar的硫化物水溶液中,测定了vsoso钛矿PdS(cr)的溶解度与ph的关系。总还原硫浓度在0.03 ~ 106 m [mol (kg H2O) -1]之间变化。溶解度数据用水溶液配合物Pd(HS)2(aq)、({text{Pd(HS}})_{3}^{ - })和({text{PdS(HS}})_{2}^{{2 - }})来描述。第一个配合物在酸性至近中性溶液中占主导地位,第二个配合物在中性至碱性条件下占主导地位,第三个配合物在碱性条件下占主导地位。PdS(cr)溶解度常数在200℃(Pd(HS)2(aq), ({text{PdS(HS}})_{2}^{{2 - }}))和350℃(({text{Pd(HS}})_{3}^{ - }))时最小。实验值与可靠的文献数据合并,拟合到HKF (Helgeson-Kirkham-Flowers)模型状态方程(EoS)。对铜铜矿PtS(cr)溶解度的文献数据进行回归,计算了Pt(HS)2(aq)和({text{Pt(HS}})_{3}^{ - })的HKF - EoS参数,其中Pt(HS)2(aq)的第三个配合物未被检测到。PtS(cr)形成主要的Pt氢硫化配合物Pt(HS)2(aq)的溶解度常数在100℃时最小,然后急剧增加,而({text{Pt(HS}})_{3}^{ - })的形成常数在250℃时最大。在环境温度下,PdS(cr)的溶解度比PtS(cr)高出2-3个对数单位,取决于ph值。约250℃是Pd和Pt硫化物溶解度相等的临界温度。在温度高于300℃时,由于Pt(HS)2(aq)生成常数急剧增大,整个pH区由酸性变为碱性,溶解Pt浓度超过Pd浓度。在700℃和2000 bar下,PtS(cr)的溶解度达到几个ppm,而PdS(cr)在含有0.1 m总还原硫的溶液中的溶解度约为40 ppb。Pt(HS)2(aq)和Pd(HS)2(aq)的稳定性差异可能导致这些金属在热液系统中分离。
{"title":"Experimental Determination of PdS(cr) Solubility in Sulfide Fluids to 490°C, 1000 bar. Thermodynamic Properties of (Hydro)Sulfide Complexes of Palladium and Platinum","authors":"E. A. Rubtsova,&nbsp;B. R. Tagirov,&nbsp;M. E. Tarnopolskaia,&nbsp;I. Y. Nikolaeva,&nbsp;I. Yu. Zlivko,&nbsp;V. A. Volchenkova,&nbsp;N. N. Akinfiev,&nbsp;V. L. Reukov,&nbsp;D. A. Chareev,&nbsp;A. V. Zotov","doi":"10.1134/S0016702925601123","DOIUrl":"10.1134/S0016702925601123","url":null,"abstract":"<p>The solubility of vysotskite PdS<sub>(cr)</sub> was measured in aqueous sulfide solutions from 4.5 to 490°C at 1–1000 bar as a function of pH. The total reduced sulfur concentrations varied between 0.03 and 106 <i>m</i> [mol (kg H<sub>2</sub>O)<sup>–1</sup>]. The solubility data were described in terms of the aqueous complexes Pd(HS)<sub>2(aq)</sub>, <span>({text{Pd(HS}})_{3}^{ - })</span>, and <span>({text{PdS(HS}})_{2}^{{2 - }})</span>. The 1st complex dominates in acidic to near-neutral solutions, the 2nd complex in neutral to alkaline pH, and the 3rd one under alkaline pH conditions. The PdS<sub>(cr)</sub> solubility constants show a minimum at 200°C (Pd(HS)<sub>2(aq)</sub>, <span>({text{PdS(HS}})_{2}^{{2 - }})</span>) and 350°C (<span>({text{Pd(HS}})_{3}^{ - })</span>). The experimental values pooled with reliable literature data, were fitted to the HKF (Helgeson–Kirkham–Flowers) model equation of state (EoS). Literature data on the solubility of cooperite PtS<sub>(cr)</sub> were regressed to calculate of the HKF EoS parameters of Pt(HS)<sub>2(aq)</sub> and <span>({text{Pt(HS}})_{3}^{ - })</span>, the 3rd complex was not detected for Pt. The PtS<sub>(cr)</sub> solubility constant to form the main Pt hydrosulfide complex, Pt(HS)<sub>2(aq)</sub>, shows a pronounced minimum at 100°C and then increases sharply, whereas the <span>({text{Pt(HS}})_{3}^{ - })</span> formation constant has a maximum at 250°C. At ambient temperature, the solubility of PdS<sub>(cr)</sub> exceeds that of PtS<sub>(cr)</sub> by 2–3 log units, depending on pH. The temperature of ca. 250°C is a borderline one where the solubilities of Pd and Pt sulfides are equal. At temperature above 300°C, due to the sharp increase in the Pt(HS)<sub>2(aq)</sub> formation constant, the dissolved Pt concentration exceeds that of Pd in the whole pH region from acidic to alkaline. At 700°C and 2000 bar, the solubility of PtS<sub>(cr)</sub> reaches a few ppm, whereas the solubility of PdS<sub>(cr)</sub> comprises about 40 ppb in a solution containing 0.1 m total reduced sulfur. These concentrations are high enough to sustain hydrothermal mobility of these metals in high-temperature magmatic-hydrothermal fluids, whereas the differences in the stability of Pt(HS)<sub>2(aq)</sub> and Pd(HS)<sub>2(aq)</sub> can result in separation of these metals in hydrothermal systems.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1184 - 1206"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702925601123.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Fe–S Binary at 6 GPa 6 GPa下的Fe-S二元结构
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925601354
D. E. Sidko, A. Shatskiy

The abundance of sulfide inclusions in diamonds, mantle xenoliths, and meteorites determines the importance of studying the Fe–S system at mantle pressures and temperatures. In the present work, the phase relationships in the Fe–S system were studied at 6 GPa in the range of 450–1500°C using a Kawai-type multianvil press. It was found that in the entered temperature range, the iron metal does not dissolve measurable amounts of sulfur and remains solid. Two intermediate compounds are stable in the system: a monosulfide solid solution (Fe1 – xS, where x = 0–0.036, 50–54 mol % S) and iron disulfide (FeS2). In coexistence with iron metal or Fe-rich liquid, monosulfide solid solution contains 50 mol % S. The Fe–FeS eutectic is located at 1000°C and 33 mol % S. Sulfur content in Fe1 – xS, coexisting with FeS2, increases from 52 to 54 mol % as temperature increases from 500 to 1100°C and does not change systematically with further temperature increase. At 1500°C, Fe1 – xS is still crystalline. The Fe1 – xS–FeS2 eutectic is situated at 1350°C and 63 mol % S. FeS2 melts congruently at 1375°C. In the range 450–1200°C, the solubility of Fe in sulfur does not exceed the detection limit (<0.5 mol %). At 1300°C, sulfur melt coexisting with FeS2 contains 10 mol % Fe. At 1400°C in the ranges of 20–43 and 58–100 mol % S, the system undergoes complete melting.

金刚石、地幔捕虏体和陨石中硫化物包裹体的丰度决定了在地幔压力和温度下研究Fe-S系统的重要性。在本工作中,使用kawai型多砧压力机在450-1500°C的6 GPa范围内研究了Fe-S体系中的相关系。结果发现,在进入的温度范围内,铁金属不溶解可测量量的硫而保持固态。两种中间化合物在系统中是稳定的:一种单硫化物固溶体(Fe1 - xS,其中x = 0-0.036, 50-54 mol % S)和二硫化铁(FeS2)。与铁金属或富铁液体共存时,单硫化物固溶体含50 mol % s, Fe-FeS共晶位于1000℃和33 mol % s,与FeS2共存时,Fe1 - xS中的硫含量随温度从500℃升高到1100℃,从52 mol %增加到54 mol %,且不随温度升高而系统变化。在1500℃时,Fe1 - xS仍呈结晶态。Fe1 - xS-FeS2共晶位于1350°C和63 mol % s, FeS2在1375°C完全熔化。在450 ~ 1200℃范围内,Fe在硫中的溶解度不超过检测限(<0.5 mol %)。在1300℃时,与FeS2共存的硫熔体含有10 mol %的铁。在1400℃,在20-43和58-100 mol % S范围内,该体系完全熔化。
{"title":"The Fe–S Binary at 6 GPa","authors":"D. E. Sidko,&nbsp;A. Shatskiy","doi":"10.1134/S0016702925601354","DOIUrl":"10.1134/S0016702925601354","url":null,"abstract":"<p>The abundance of sulfide inclusions in diamonds, mantle xenoliths, and meteorites determines the importance of studying the Fe–S system at mantle pressures and temperatures. In the present work, the phase relationships in the Fe–S system were studied at 6 GPa in the range of 450–1500°C using a Kawai-type multianvil press. It was found that in the entered temperature range, the iron metal does not dissolve measurable amounts of sulfur and remains solid. Two intermediate compounds are stable in the system: a monosulfide solid solution (Fe<sub>1 –</sub> <sub><i>x</i></sub>S, where <i>x</i> = 0–0.036, 50–54 mol % S) and iron disulfide (FeS<sub>2</sub>). In coexistence with iron metal or Fe-rich liquid, monosulfide solid solution contains 50 mol % S. The Fe–FeS eutectic is located at 1000°C and 33 mol % S. Sulfur content in Fe<sub>1 –</sub> <sub><i>x</i></sub>S, coexisting with FeS<sub>2</sub>, increases from 52 to 54 mol % as temperature increases from 500 to 1100°C and does not change systematically with further temperature increase. At 1500°C, Fe<sub>1 –</sub> <sub><i>x</i></sub>S is still crystalline. The Fe<sub>1 –</sub> <sub><i>x</i></sub>S–FeS<sub>2</sub> eutectic is situated at 1350°C and 63 mol % S. FeS<sub>2</sub> melts congruently at 1375°C. In the range 450–1200°C, the solubility of Fe in sulfur does not exceed the detection limit (&lt;0.5 mol %). At 1300°C, sulfur melt coexisting with FeS<sub>2</sub> contains 10 mol % Fe. At 1400°C in the ranges of 20–43 and 58–100 mol % S, the system undergoes complete melting.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1154 - 1166"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subsolidus Phase Relations in the System Fe–Ni–S at 450°C and 6 GPa 450℃和6gpa下Fe-Ni-S体系的亚固相关系
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925601330
A. Shatskiy, D. E. Sidko

Subsolidus phase relations in the Fe–Ni–S system were studied in a multianvil press at 6 GPa, 450°C, and a duration of 17 h using ceramic capsules. The nine intermediate compounds were established: FeS2 pyrite (Ni# ≤ 7), NiS2 vaesite (Ni# ≥ 96), (Fe, Ni)1 – xS (Ni# 0–100), (Ni, Fe)4S3 (S# 42–44, Ni# ≥ 60), Ni3S2 heazlewoodite (S# 40, Ni# ≥ 97), Ni3 – xS (S# 26, Ni# 100), Ni3.5Fe0.5S (S# 21, Ni# 87), and metal phase (Ni# 64–68), where Ni# = Ni/(Ni + Fe) × 100 mol % and S# = S/(S + Ni + Fe) × 100 mol %. A wide solubility gap between disulfides results in two large three-phase fields: (Fe0.93Ni0.07)S2 + S + (Ni0.96Fe0.04)S2 and (Fe0.93Ni0.07)S2 + (Ni0.96Fe0.04)1 – xS + (Ni0.96Fe0.04)S2. A narrow field of monosulfide solid-solution is sandwiched between FeS2 + (Fe, Ni)1 – xS and (Fe, Ni)S + (Ni, Fe)4S3 two-phase fields. Large three-phase fields: Fe0.88Ni0.12 Fe0.78Ni0.22S + Fe0.65Ni0.35, Ni063Fe0.37 + Fe0.78Ni0.22S + (Ni0.6Fe0.4)4S3, and Fe0.32Ni068 + (Fe0.3Ni0.7)4S3 + Fe0.05Ni0.95 appear at bulk S# < 50. Stabilization of a new phase, Ni3.5Fe0.5S, yields two large three-phase fields: Ni3.5Fe0.5S + (Fe0.3Ni0.7)4S3 + Ni3S2 and Ni3.5Fe0.5S + Ni3S2 + Ni.

采用陶瓷胶囊,在6 GPa、450℃、17 h的压力下,在多砧压力机中研究了Fe-Ni-S体系的亚固相关系。确定了9个中间化合物:FeS2黄铁矿(Ni#≤7)、NiS2钒锡石(Ni#≥96)、(Fe, Ni)1 - xS (Ni# 0-100)、(Ni, Fe)4S3 (s# 42-44, Ni#≥60)、Ni3S2杂石(s# 40, Ni#≥97)、Ni3 - xS (s# 26, Ni# 100)、Ni3.5Fe0.5S (s# 21, Ni# 87)和金属相(Ni# 64-68),其中Ni# = Ni/(Ni + Fe) × 100 mol %, s# = S/(S + Ni + Fe) × 100 mol %。由于两种硫化物之间存在较大的溶解度间隙,形成了(Fe0.93Ni0.07)S2 + S + (Ni0.96Fe0.04)S2和(Fe0.93Ni0.07)S2 + (Ni0.96Fe0.04)1 - xS + (Ni0.96Fe0.04)S2两个大的三相场。在FeS2 + (Fe, Ni)1 - xS和(Fe, Ni)S + (Ni, Fe)4S3两相场之间夹有一个狭窄的单硫化物固溶体场。大的三相场:Fe0.88Ni0.12 Fe0.78Ni0.22S + Fe0.65Ni0.35, Ni063Fe0.37 + Fe0.78Ni0.22S + (Ni0.6Fe0.4)4S3, Fe0.32Ni068 + (Fe0.3Ni0.7)4S3 + Fe0.05Ni0.95。新相Ni3.5Fe0.5S的稳定产生了两个大的三相场:Ni3.5Fe0.5S + (Fe0.3Ni0.7)4S3 + Ni3S2和Ni3.5Fe0.5S + Ni3S2 + Ni。
{"title":"Subsolidus Phase Relations in the System Fe–Ni–S at 450°C and 6 GPa","authors":"A. Shatskiy,&nbsp;D. E. Sidko","doi":"10.1134/S0016702925601330","DOIUrl":"10.1134/S0016702925601330","url":null,"abstract":"<p>Subsolidus phase relations in the Fe–Ni–S system were studied in a multianvil press at 6 GPa, 450°C, and a duration of 17 h using ceramic capsules. The nine intermediate compounds were established: FeS<sub>2</sub> pyrite (Ni# ≤ 7), NiS<sub>2</sub> vaesite (Ni# ≥ 96), (Fe, Ni)<sub>1 –</sub> <sub><i>x</i></sub>S (Ni# 0–100), (Ni, Fe)<sub>4</sub>S<sub>3</sub> (S# 42–44, Ni# ≥ 60), Ni<sub>3</sub>S<sub>2</sub> heazlewoodite (S# 40, Ni# ≥ 97), Ni<sub>3 –</sub> <sub><i>x</i></sub>S (S# 26, Ni# 100), Ni<sub>3.5</sub>Fe<sub>0.5</sub>S (S# 21, Ni# 87), and metal phase (Ni# 64–68), where Ni# = Ni/(Ni + Fe) × 100 mol % and S# = S/(S + Ni + Fe) × 100 mol %. A wide solubility gap between disulfides results in two large three-phase fields: (Fe<sub>0.93</sub>Ni<sub>0.07</sub>)S<sub>2</sub> + S + (Ni<sub>0.96</sub>Fe<sub>0.04</sub>)S<sub>2</sub> and (Fe<sub>0.93</sub>Ni<sub>0.07</sub>)S<sub>2</sub> + (Ni<sub>0.96</sub>Fe<sub>0.04</sub>)<sub>1 –</sub> <sub><i>x</i></sub>S + (Ni<sub>0.96</sub>Fe<sub>0.04</sub>)S<sub>2</sub>. A narrow field of monosulfide solid-solution is sandwiched between FeS<sub>2</sub> + (Fe, Ni)<sub>1 –</sub> <sub><i>x</i></sub>S and (Fe, Ni)S + (Ni, Fe)<sub>4</sub>S<sub>3</sub> two-phase fields. Large three-phase fields: Fe<sub>0.88</sub>Ni<sub>0.12</sub> Fe<sub>0.78</sub>Ni<sub>0.22</sub>S + Fe<sub>0.65</sub>Ni<sub>0.35</sub>, Ni<sub>063</sub>Fe<sub>0.37</sub> + Fe<sub>0.78</sub>Ni<sub>0.22</sub>S + (Ni<sub>0.6</sub>Fe<sub>0.4</sub>)<sub>4</sub>S<sub>3</sub>, and Fe<sub>0.32</sub>Ni<sub>068</sub> + (Fe<sub>0.3</sub>Ni<sub>0.7</sub>)<sub>4</sub>S<sub>3</sub> + Fe<sub>0.05</sub>Ni<sub>0.95</sub> appear at bulk S# &lt; 50. Stabilization of a new phase, Ni<sub>3.5</sub>Fe<sub>0.5</sub>S, yields two large three-phase fields: Ni<sub>3.5</sub>Fe<sub>0.5</sub>S + (Fe<sub>0.3</sub>Ni<sub>0.7</sub>)<sub>4</sub>S<sub>3</sub> + Ni<sub>3</sub>S<sub>2</sub> and Ni<sub>3.5</sub>Fe<sub>0.5</sub>S + Ni<sub>3</sub>S<sub>2</sub> + Ni.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1174 - 1183"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Halogens (F, Cl) in Natural Diamond: SIMS Study 天然钻石中的卤素(F, Cl)勘误:SIMS研究
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925190036
F. V. Kaminsky, B. Ya. Ber, D. Yu. Kazantsev, S. N. Shilobreeva, M. V. Tokarev
{"title":"Erratum to: Halogens (F, Cl) in Natural Diamond: SIMS Study","authors":"F. V. Kaminsky,&nbsp;B. Ya. Ber,&nbsp;D. Yu. Kazantsev,&nbsp;S. N. Shilobreeva,&nbsp;M. V. Tokarev","doi":"10.1134/S0016702925190036","DOIUrl":"10.1134/S0016702925190036","url":null,"abstract":"","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1265 - 1265"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702925190036.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Metal-Rich Ungrouped Chondrite Northwest Africa 13202 勘误:非洲西北部富金属未分组球粒陨石13202
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925190024
M. A. Ivanova, K. M. Ryazantsev, S. N. Teplyakova, D. A. Sadilenko
{"title":"Erratum to: Metal-Rich Ungrouped Chondrite Northwest Africa 13202","authors":"M. A. Ivanova,&nbsp;K. M. Ryazantsev,&nbsp;S. N. Teplyakova,&nbsp;D. A. Sadilenko","doi":"10.1134/S0016702925190024","DOIUrl":"10.1134/S0016702925190024","url":null,"abstract":"","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1264 - 1264"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702925190024.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Joins FeS2–NiS2 and FeS2–S at 6 GPa FeS2-NiS2和FeS2-S在6 GPa处连接
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925601299
A. Shatskiy, D. E. Sidko, D. V. Shatskaya

Phase relations along the FeS2–NiS2 and Fe0.36S0.64–S joins were studied at 6 GPa in ceramics capsules using a multianvil Osugi-type press. The FeS2–NiS2 system has an eutectic type of T–X diagram with limited solid solutions. The solubility of NiS2 in pyrite increases with temperature from 1–6 mol % at 450–700°С, to 7–8 mol % at 800–1100°С, and achieves a maximum of 25 mol % at 1250°С. The FeS2 content in vaesite increases from 2–4 mol % at 450–600°С, to 5–20 mol % at 650–900°С, and achieves the maximum, 64 mol %, at 1250°С. The pyrite-vaesite eutectic is situated near 1260°C and has Ni# 42 mol %, where Ni# = Ni/(Ni + Fe) × 100 mol %. At 6 GPa, FeS2 and NiS2 melt congruently near 1380 and 1410°C, respectively. In the range of 1000–1200°C, the solubility of Fe in liquid sulfur does not exceed the detection limit (<0.5 mol %). At 1300°C, liquid sulfur coexisting with pyrite contains 10 mol % Fe. At 1400°C, a continuous transition from a sulfur melt to a sulfide melt is observed. Thus, FeS2 and NiS2 are thermodynamically stable over the entire range of geothermal conditions of subduction zones and the subcontinental lithospheric mantle at a depth of about 180 km and experience congruent melting at temperatures corresponding to the thermal anomalies at the cratonic roots (kinked geotherms) and geothermal conditions of the convective mantle.

利用多砧osugi压力机研究了6 GPa下陶瓷胶囊中FeS2-NiS2和fe0.36 - s0.64 - s连接的相关系。FeS2-NiS2体系具有共晶型的T-X图,固溶体有限。NiS2在黄铁矿中的溶解度随着温度的升高而增大,在450 ~ 700°С时溶解度为1 ~ 6 mol %,在800 ~ 1100°С时溶解度为7 ~ 8 mol %,在1250°С时溶解度达到最大值25 mol %。在450 ~ 600°С时,钒锡石中的FeS2含量从2 ~ 4 mol %增加到650 ~ 900°С时的5 ~ 20 mol %,在1250°С时达到最大值64 mol %。黄铁矿-维氏体共晶位于1260℃附近,Ni#为42 mol %,其中Ni# = Ni/(Ni + Fe) × 100 mol %。在6 GPa时,FeS2和NiS2分别在1380°和1410°C附近完全熔化。在1000 ~ 1200℃范围内,Fe在液态硫中的溶解度不超过检测限(<0.5 mol %)。在1300℃时,与黄铁矿共存的液态硫含有10 mol %的铁。在1400℃时,观察到从硫熔体到硫化物熔体的连续转变。因此,FeS2和NiS2在俯冲带和次大陆岩石圈地幔约180 km的整个地热条件范围内都是热力学稳定的,并且在与克拉通根(扭结地热)和对流地幔地热条件相对应的温度下经历了一致的熔融。
{"title":"The Joins FeS2–NiS2 and FeS2–S at 6 GPa","authors":"A. Shatskiy,&nbsp;D. E. Sidko,&nbsp;D. V. Shatskaya","doi":"10.1134/S0016702925601299","DOIUrl":"10.1134/S0016702925601299","url":null,"abstract":"<p>Phase relations along the FeS<sub>2</sub>–NiS<sub>2</sub> and Fe<sub>0.36</sub>S<sub>0.64</sub>–S joins were studied at 6 GPa in ceramics capsules using a multianvil Osugi-type press. The FeS<sub>2</sub>–NiS<sub>2</sub> system has an eutectic type of <i>T–X</i> diagram with limited solid solutions. The solubility of NiS<sub>2</sub> in pyrite increases with temperature from 1–6 mol % at 450–700°С, to 7–8 mol % at 800–1100°С, and achieves a maximum of 25 mol % at 1250°С. The FeS<sub>2</sub> content in vaesite increases from 2–4 mol % at 450–600°С, to 5–20 mol % at 650–900°С, and achieves the maximum, 64 mol %, at 1250°С. The pyrite-vaesite eutectic is situated near 1260°C and has Ni# 42 mol %, where Ni# = Ni/(Ni + Fe) × 100 mol %. At 6 GPa, FeS<sub>2</sub> and NiS<sub>2</sub> melt congruently near 1380 and 1410°C, respectively. In the range of 1000–1200°C, the solubility of Fe in liquid sulfur does not exceed the detection limit (&lt;0.5 mol %). At 1300°C, liquid sulfur coexisting with pyrite contains 10 mol % Fe. At 1400°C, a continuous transition from a sulfur melt to a sulfide melt is observed. Thus, FeS<sub>2</sub> and NiS<sub>2</sub> are thermodynamically stable over the entire range of geothermal conditions of subduction zones and the subcontinental lithospheric mantle at a depth of about 180 km and experience congruent melting at temperatures corresponding to the thermal anomalies at the cratonic roots (kinked geotherms) and geothermal conditions of the convective mantle.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1167 - 1173"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochemical Anomaly Detection Cooperatively Driven by Multiple Models Based on Stacking Framework 基于叠加框架的多模型协同驱动地球化学异常检测
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925600853
Mengxue Cao, Dongmei Yin, Minghui Wei, Laijun Lu

In response to the systematic uncertainty of geochemical anomaly detection related to Fe-mineralization in the Hunjiang area in Jilin Province, China, this paper synthesizes nine geochemical elements (Fe2O3, Al2O3, etc.) and a geological constraint to construct a characteristic dataset and then proposes a method based on the Stacking framework for using Gaussian Naive Bayes to integrate three anomaly detectors of Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost model. The results indicate that: (1) The single model has limitations and high uncertainty: the high anomaly areas detected by Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost model only captured 33.3, 33.3, and 28.6% of known iron deposits. This shows that the accuracy of anomaly detection is not high, presenting a high degree of uncertainty. (2) Multi models averaging effectively reduces uncertainty: by integrating Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost with Gaussian Naive Bayes, the spatial correlation between the high anomaly areas and known Fe-mineralization deposits is significantly enhanced, capturing 85.7% of known iron deposits. This shows that the accuracy has been improved and uncertainty has been reduced. (3) Stacking framework demonstrated clear advantages: compared with a single model, the model designed based on the Stacking framework converges faster and is close to the level of an ideal anomaly detector, effectively improving the accuracy and generalization ability. In summary, the method based on the Stacking framework for using Gaussian Naive Bayes to integrate and average Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost model provides new ideas for reducing the uncertainty of geochemical anomaly detection, and lays a better support foundation for geochemical exploration work and mineral resource prospecting.

针对吉林省浑江地区fe矿化地球化学异常检测存在的系统不确定性,综合9种地球化学元素(Fe2O3、Al2O3等)和地质约束构造特征数据集,提出了基于叠加框架的高斯朴素贝叶斯支持向量分类、随机森林和K-Means-SMOTE-Boost模型3种异常检测器的集成方法。结果表明:(1)单一模型存在局限性和高不确定性,支持向量分类、随机森林和K-Means-SMOTE-Boost模型检测到的高异常区域仅占已知铁矿的33.3%、33.3%和28.6%;这说明异常检测的精度不高,存在很大的不确定性。(2)多模型平均有效降低了不确定性:通过将支持向量分类、随机森林和K-Means-SMOTE-Boost与高斯朴素贝叶斯相结合,显著增强了高异常区与已知铁矿床的空间相关性,捕获了85.7%的已知铁矿床。这表明精度得到了提高,不确定度得到了降低。(3)堆叠框架优势明显:与单一模型相比,基于堆叠框架设计的模型收敛速度更快,接近理想异常检测器的水平,有效提高了精度和泛化能力。综上所述,基于高斯朴素贝叶斯对支持向量分类、随机森林和K-Means-SMOTE-Boost模型进行整合和平均的叠加框架方法,为降低化探异常检测的不确定性提供了新的思路,为化探工作和矿产资源找矿奠定了较好的支撑基础。
{"title":"Geochemical Anomaly Detection Cooperatively Driven by Multiple Models Based on Stacking Framework","authors":"Mengxue Cao,&nbsp;Dongmei Yin,&nbsp;Minghui Wei,&nbsp;Laijun Lu","doi":"10.1134/S0016702925600853","DOIUrl":"10.1134/S0016702925600853","url":null,"abstract":"<p>In response to the systematic uncertainty of geochemical anomaly detection related to Fe-mineralization in the Hunjiang area in Jilin Province, China, this paper synthesizes nine geochemical elements (Fe<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, etc.) and a geological constraint to construct a characteristic dataset and then proposes a method based on the Stacking framework for using Gaussian Naive Bayes to integrate three anomaly detectors of Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost model. The results indicate that: (1) The single model has limitations and high uncertainty: the high anomaly areas detected by Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost model only captured 33.3, 33.3, and 28.6% of known iron deposits. This shows that the accuracy of anomaly detection is not high, presenting a high degree of uncertainty. (2) Multi models averaging effectively reduces uncertainty: by integrating Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost with Gaussian Naive Bayes, the spatial correlation between the high anomaly areas and known Fe-mineralization deposits is significantly enhanced, capturing 85.7% of known iron deposits. This shows that the accuracy has been improved and uncertainty has been reduced. (3) Stacking framework demonstrated clear advantages: compared with a single model, the model designed based on the Stacking framework converges faster and is close to the level of an ideal anomaly detector, effectively improving the accuracy and generalization ability. In summary, the method based on the Stacking framework for using Gaussian Naive Bayes to integrate and average Support Vector Classification, Random Forest, and K-Means-SMOTE-Boost model provides new ideas for reducing the uncertainty of geochemical anomaly detection, and lays a better support foundation for geochemical exploration work and mineral resource prospecting.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1243 - 1255"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Fe-Oxide Microspherule Fragment from Chang’E-5 Soil Sample: Possible Evidence for Lunar Fumarole Activity “嫦娥五号”土壤样品中铁氧化物微球碎片的勘误:月球喷气孔活动的可能证据
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925190012
S. I. Demidova, C. A. Lorenz, D. D. Badyukov
{"title":"Erratum to: Fe-Oxide Microspherule Fragment from Chang’E-5 Soil Sample: Possible Evidence for Lunar Fumarole Activity","authors":"S. I. Demidova,&nbsp;C. A. Lorenz,&nbsp;D. D. Badyukov","doi":"10.1134/S0016702925190012","DOIUrl":"10.1134/S0016702925190012","url":null,"abstract":"","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1263 - 1263"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702925190012.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CaCO3–CaF2 Binary at 6 GPa 6 GPa下的CaCO3-CaF2二元结构
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-27 DOI: 10.1134/S0016702925601408
A. Shatskiy, A. V. Kovalenko, Yu. G. Vinogradova, D. V. Shatskaya, K. M. Stepanov, A. S. Shevchuk, G. N. Ovsyannikov, D. E. Sidko, M. A. Nikitin

The present work aims to study the phase relations along the CaСO3–CaF2 join at 6 GPa. The experiments were performed using a multianvil press in graphite capsules. The system has one intermediate compound, Ca2CO3F2, identified as brenkite by Raman spectroscopy. At 900–1000°C, the presence of brenkite splits the system into two partial binaries: aragonite + brenkite and brenkite + fluorite. An aragonite-brenkite eutectic is situated near 1080°C. An eutectic melt contains 40 mol% CaF2. Brenkite melts incongruently at 1100°C, producing fluorite and peritectic liquid containing 48 mol% CaF2. The presence of fluorine lowers the melting temperature of the calcium carbonate by almost 600°C to a temperature corresponding to a continental geotherm with a surface heat flow of 35 mW/m2. Thus, under mantle conditions, fluorine enable a calcium carbonate-rich melt to remain liquid at a much lower temperature (1080°C) than would be possible without the presence of fluorine (1660°C).

本工作的目的是研究在6 GPa下CaСO3-CaF2连接处的相关系。实验是在石墨胶囊中使用多砧压机进行的。该体系有一个中间化合物Ca2CO3F2,通过拉曼光谱鉴定为brenkite。在900-1000℃时,brenkite的存在将该体系分成两个部分二元:文石+ brenkite和brenkite +萤石。文石-brenkite共晶位于1080°C附近。共晶熔体含有40摩尔%的CaF2。Brenkite在1100℃时不均匀熔化,产生萤石和含有48 mol% CaF2的包晶液体。氟的存在使碳酸钙的熔化温度降低了近600°C,达到相当于大陆地热的温度,表面热流为35 mW/m2。因此,在地幔条件下,氟使富含碳酸钙的熔体能够在比没有氟(1660℃)时低得多的温度(1080℃)下保持液态。
{"title":"The CaCO3–CaF2 Binary at 6 GPa","authors":"A. Shatskiy,&nbsp;A. V. Kovalenko,&nbsp;Yu. G. Vinogradova,&nbsp;D. V. Shatskaya,&nbsp;K. M. Stepanov,&nbsp;A. S. Shevchuk,&nbsp;G. N. Ovsyannikov,&nbsp;D. E. Sidko,&nbsp;M. A. Nikitin","doi":"10.1134/S0016702925601408","DOIUrl":"10.1134/S0016702925601408","url":null,"abstract":"<p>The present work aims to study the phase relations along the CaСO<sub>3</sub>–CaF<sub>2</sub> join at 6 GPa. The experiments were performed using a multianvil press in graphite capsules. The system has one intermediate compound, Ca<sub>2</sub>CO<sub>3</sub>F<sub>2</sub>, identified as brenkite by Raman spectroscopy. At 900–1000°C, the presence of brenkite splits the system into two partial binaries: aragonite + brenkite and brenkite + fluorite. An aragonite-brenkite eutectic is situated near 1080°C. An eutectic melt contains 40 mol% CaF<sub>2</sub>. Brenkite melts incongruently at 1100°C, producing fluorite and peritectic liquid containing 48 mol% CaF<sub>2</sub>. The presence of fluorine lowers the melting temperature of the calcium carbonate by almost 600°C to a temperature corresponding to a continental geotherm with a surface heat flow of 35 mW/m<sup>2</sup>. Thus, under mantle conditions, fluorine enable a calcium carbonate-rich melt to remain liquid at a much lower temperature (1080°C) than would be possible without the presence of fluorine (1660°C).</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 13","pages":"1145 - 1153"},"PeriodicalIF":0.8,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146045628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of Hydrocarbons during the Thermal Maturation of Kaa-Khem Coal Kaa-Khem煤热成熟过程中烃类的形成
IF 0.8 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-01-25 DOI: 10.1134/S0016702925600749
D. A. Bushnev, N. S. Burdelnaya, S. A. Ondar, N. A. Smirnova

The paper examines coal from the Kaa-Khem field from the viewpoint of its oil and gas generation potential. Coal from the Kaa-Khem field was subjected to hydrothermal treatment at 350°C/24 h to simulate the maturation of its organic matter. The kinetic characteristics of the organic matter of Kaa-Khem coal were assessed from the results of Rock-Eval pyrolysis at three heating rates. The kinetic characteristics of individual C1–C5 hydrocarbons were additionally studied by dry stepwise pyrolysis. Changes in the composition of hydrocarbon biomarkers before and after hydrous pyrolysis were also analyzed, and the hydrothermal treatment was found out to have affected mainly the distribution of n-alkanes and aromatic hydrocarbons, whereas the composition of the sterane and hopane biomarkers have not been modified any significantly. The study of the coal composition by pyrolytic gas chromatography–mass spectrometry made it possible to record the loss of long alkyl chains in the studied range of thermal maturity. Although the studies led us to estimate the hydrocarbon potential of Kaa-Khem coal as high, the possibility of its conversion and the prediction of the phase composition of the fluids remain uncertain and require further studies.

本文从产油气潜力的角度对Kaa-Khem气田的煤炭进行了研究。对Kaa-Khem油田的煤进行350℃/24 h的水热处理,模拟煤中有机质的成熟过程。根据三种升温速率下的岩石热解结果,评价了Kaa-Khem煤有机质的动力学特征。采用干法分步热解法研究了单个C1-C5烃的动力学特性。分析了加水热解前后烃类生物标志物组成的变化,发现水热处理主要影响了正构烷烃和芳烃的分布,而甾烷和藿烷的生物标志物组成没有明显改变。利用热解气相色谱-质谱联用技术对煤的组成进行了研究,使得在研究的热成熟度范围内记录长烷基链的损失成为可能。虽然这些研究使我们估计Kaa-Khem煤的油气潜力很高,但其转化的可能性和流体相组成的预测仍然不确定,需要进一步研究。
{"title":"Formation of Hydrocarbons during the Thermal Maturation of Kaa-Khem Coal","authors":"D. A. Bushnev,&nbsp;N. S. Burdelnaya,&nbsp;S. A. Ondar,&nbsp;N. A. Smirnova","doi":"10.1134/S0016702925600749","DOIUrl":"10.1134/S0016702925600749","url":null,"abstract":"<p>The paper examines coal from the Kaa-Khem field from the viewpoint of its oil and gas generation potential. Coal from the Kaa-Khem field was subjected to hydrothermal treatment at 350°C/24 h to simulate the maturation of its organic matter. The kinetic characteristics of the organic matter of Kaa-Khem coal were assessed from the results of Rock-Eval pyrolysis at three heating rates. The kinetic characteristics of individual C<sub>1</sub>–C<sub>5</sub> hydrocarbons were additionally studied by dry stepwise pyrolysis. Changes in the composition of hydrocarbon biomarkers before and after hydrous pyrolysis were also analyzed, and the hydrothermal treatment was found out to have affected mainly the distribution of <i>n</i>-alkanes and aromatic hydrocarbons, whereas the composition of the sterane and hopane biomarkers have not been modified any significantly. The study of the coal composition by pyrolytic gas chromatography–mass spectrometry made it possible to record the loss of long alkyl chains in the studied range of thermal maturity. Although the studies led us to estimate the hydrocarbon potential of Kaa-Khem coal as high, the possibility of its conversion and the prediction of the phase composition of the fluids remain uncertain and require further studies.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"63 12","pages":"1084 - 1095"},"PeriodicalIF":0.8,"publicationDate":"2026-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geochemistry International
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1