{"title":"Experimental and numerical study of the closure of voids with different size and various locations in the three-dimensional cogging process","authors":"Marcin Kukuryk","doi":"10.1007/s12289-023-01798-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new forging system was developed and a new complex methodology was tested for the analysis of the closure of voids. The effective geometric shapes of anvils and optimal the forging parameters has been determined. A new cogging process provided a complete closure of voids, which was confirmed by experimental tests. The effect of the reduction ratio, original anvil shape, forging ratio and the location and size of introduced voids on the efficiency of void closure during the multi-transition cogging process was assessed. Moreover, the following were used for the evaluation of void closure: the hydrostatic stress around voids, stress triaxiality, effective strain around voids, and the critical reduction ratio. Numerical examinations were performed using the finite element method (FEM) for the three-dimensional forging process at elevated temperature. Computer simulations of the cogging process under investigation were carried out using a program DEFORM-3D, and selected simulation results were compared with experimental test results. Void reduction predictions obtained from the FEM analysis were in good agreement with the experimental findings. The test results are supplemented with the prediction of crack formation in the zone of existing voids and within the forging volume during the multi-transition cogging process.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01798-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a new forging system was developed and a new complex methodology was tested for the analysis of the closure of voids. The effective geometric shapes of anvils and optimal the forging parameters has been determined. A new cogging process provided a complete closure of voids, which was confirmed by experimental tests. The effect of the reduction ratio, original anvil shape, forging ratio and the location and size of introduced voids on the efficiency of void closure during the multi-transition cogging process was assessed. Moreover, the following were used for the evaluation of void closure: the hydrostatic stress around voids, stress triaxiality, effective strain around voids, and the critical reduction ratio. Numerical examinations were performed using the finite element method (FEM) for the three-dimensional forging process at elevated temperature. Computer simulations of the cogging process under investigation were carried out using a program DEFORM-3D, and selected simulation results were compared with experimental test results. Void reduction predictions obtained from the FEM analysis were in good agreement with the experimental findings. The test results are supplemented with the prediction of crack formation in the zone of existing voids and within the forging volume during the multi-transition cogging process.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.