Experimental and numerical study of the closure of voids with different size and various locations in the three-dimensional cogging process

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-11-14 DOI:10.1007/s12289-023-01798-5
Marcin Kukuryk
{"title":"Experimental and numerical study of the closure of voids with different size and various locations in the three-dimensional cogging process","authors":"Marcin Kukuryk","doi":"10.1007/s12289-023-01798-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new forging system was developed and a new complex methodology was tested for the analysis of the closure of voids. The effective geometric shapes of anvils and optimal the forging parameters has been determined. A new cogging process provided a complete closure of voids, which was confirmed by experimental tests. The effect of the reduction ratio, original anvil shape, forging ratio and the location and size of introduced voids on the efficiency of void closure during the multi-transition cogging process was assessed. Moreover, the following were used for the evaluation of void closure: the hydrostatic stress around voids, stress triaxiality, effective strain around voids, and the critical reduction ratio. Numerical examinations were performed using the finite element method (FEM) for the three-dimensional forging process at elevated temperature. Computer simulations of the cogging process under investigation were carried out using a program DEFORM-3D, and selected simulation results were compared with experimental test results. Void reduction predictions obtained from the FEM analysis were in good agreement with the experimental findings. The test results are supplemented with the prediction of crack formation in the zone of existing voids and within the forging volume during the multi-transition cogging process.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01798-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new forging system was developed and a new complex methodology was tested for the analysis of the closure of voids. The effective geometric shapes of anvils and optimal the forging parameters has been determined. A new cogging process provided a complete closure of voids, which was confirmed by experimental tests. The effect of the reduction ratio, original anvil shape, forging ratio and the location and size of introduced voids on the efficiency of void closure during the multi-transition cogging process was assessed. Moreover, the following were used for the evaluation of void closure: the hydrostatic stress around voids, stress triaxiality, effective strain around voids, and the critical reduction ratio. Numerical examinations were performed using the finite element method (FEM) for the three-dimensional forging process at elevated temperature. Computer simulations of the cogging process under investigation were carried out using a program DEFORM-3D, and selected simulation results were compared with experimental test results. Void reduction predictions obtained from the FEM analysis were in good agreement with the experimental findings. The test results are supplemented with the prediction of crack formation in the zone of existing voids and within the forging volume during the multi-transition cogging process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维开槽过程中不同尺寸、不同位置孔洞闭合的实验与数值研究
本文开发了一种新的锻造系统,并测试了一种新的复杂方法来分析空隙的闭合性。确定了顶块的有效几何形状和最优锻造参数。一种新的开孔工艺提供了一个完全封闭的空隙,这是由实验测试证实。评估了多过渡齿槽成形过程中,压缩比、原始砧形、锻造比以及引入孔洞的位置和大小对孔洞闭合效率的影响。利用孔洞周围静水应力、应力三轴性、孔洞周围有效应变和临界折减比来评价孔洞闭合性。采用有限元方法对三维高温锻造过程进行了数值模拟。利用DEFORM-3D程序对所研究的齿槽过程进行了计算机模拟,并将选定的模拟结果与实验测试结果进行了比较。从有限元分析中得到的孔隙减少预测与实验结果很好地吻合。对试验结果进行了补充,并预测了在多过渡齿槽加工过程中存在孔洞区域和锻件内部裂纹的形成情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1