Investigation of feature-based and space-filling tool path strategies for formability in incremental sheet metal forming

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-09-15 DOI:10.1007/s12289-023-01781-0
Sahil Bharti, Karthik Subramanya Karvaje, Hariharan Krishnaswamy, Anupam Agrawal, S. K. Panigrahi
{"title":"Investigation of feature-based and space-filling tool path strategies for formability in incremental sheet metal forming","authors":"Sahil Bharti,&nbsp;Karthik Subramanya Karvaje,&nbsp;Hariharan Krishnaswamy,&nbsp;Anupam Agrawal,&nbsp;S. K. Panigrahi","doi":"10.1007/s12289-023-01781-0","DOIUrl":null,"url":null,"abstract":"<div><p>Incremental sheet metal forming (ISF) is a versatile dieless forming process for manufacturing complex sheet metal components. The toolpath is one of the most critical process parameters, significantly influencing the ISF formability. The conventional toolpath strategies, such as spiral and constant z-slice-based tool paths, do not prove helpful for complex asymmetries in part geometry. The approach to toolpath planning in ISF should consider both material behavior and design complexity. This work compares conventional toolpaths with two strategies, namely feature-based and space-filling fractal tool paths. Material thinning and geometric deviations are critical limitations for successful part development. All toolpath strategies were evaluated for material distribution, geometric accuracy, and fracture depth using four carefully designed components with gradually increasing asymmetry. As evident from the results obtained, the material deformation was sensitive to the choice of toolpath strategies. The feature-based tool path captures the part curvatures more uniformly, leading to homogeneous thickness distribution. At the same time, fractal-based strategies lead to lower overall geometric deviation in the region of curved profiles.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01781-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Incremental sheet metal forming (ISF) is a versatile dieless forming process for manufacturing complex sheet metal components. The toolpath is one of the most critical process parameters, significantly influencing the ISF formability. The conventional toolpath strategies, such as spiral and constant z-slice-based tool paths, do not prove helpful for complex asymmetries in part geometry. The approach to toolpath planning in ISF should consider both material behavior and design complexity. This work compares conventional toolpaths with two strategies, namely feature-based and space-filling fractal tool paths. Material thinning and geometric deviations are critical limitations for successful part development. All toolpath strategies were evaluated for material distribution, geometric accuracy, and fracture depth using four carefully designed components with gradually increasing asymmetry. As evident from the results obtained, the material deformation was sensitive to the choice of toolpath strategies. The feature-based tool path captures the part curvatures more uniformly, leading to homogeneous thickness distribution. At the same time, fractal-based strategies lead to lower overall geometric deviation in the region of curved profiles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征和空间填充的增量板件成形性刀具路径策略研究
渐进式钣金成形(ISF)是制造复杂钣金件的通用无模成形工艺。刀具路径是影响ISF成形性能的关键工艺参数之一。传统的刀具路径策略,如螺旋和恒定的基于z片的刀具路径,对零件几何形状的复杂不对称没有帮助。ISF中刀具轨迹规划的方法应同时考虑材料性能和设计复杂性。这项工作比较了传统的刀具路径与两种策略,即基于特征和空间填充的分形刀具路径。材料变薄和几何偏差是零件成功开发的关键限制因素。使用四个精心设计的不对称性逐渐增加的部件,评估了所有刀具路径策略的材料分布、几何精度和断裂深度。结果表明,刀具路径的选择对材料变形非常敏感。基于特征的刀具路径更均匀地捕获零件曲率,从而实现均匀的厚度分布。同时,基于分形的策略可以降低曲面轮廓区域的整体几何偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1