Lattice dynamics, sound velocities, and atomic environments of szomolnokite at high pressure

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2023-10-24 DOI:10.1007/s00269-023-01255-4
Olivia S. Pardo, Vasilije V. Dobrosavljevic, Wolfgang Sturhahn, Thomas S. Toellner, Benjamin Strozewski, Jennifer M. Jackson
{"title":"Lattice dynamics, sound velocities, and atomic environments of szomolnokite at high pressure","authors":"Olivia S. Pardo,&nbsp;Vasilije V. Dobrosavljevic,&nbsp;Wolfgang Sturhahn,&nbsp;Thomas S. Toellner,&nbsp;Benjamin Strozewski,&nbsp;Jennifer M. Jackson","doi":"10.1007/s00269-023-01255-4","DOIUrl":null,"url":null,"abstract":"<div><p>Complex mixtures of sulfates, silicates, and ice have been observed in a variety of planetary environments on Earth, Mars and the icy satellites of the solar system. Characterizing the properties of the corresponding compositional endmembers is important for understanding the interiors of a range of planetary bodies in which these phases are observed. To measure the electronic and vibrational properties of the pure ferrous iron endmember of the kieserite group, szomolnokite, (FeSO<sub>4</sub>⋅H<sub>2</sub>O), we have performed synchrotron <sup>57</sup>Fe nuclear resonant inelastic and forward scattering experiments in the diamond-anvil cell up to 14.5 GPa. This pressure range covers depths within Earth’s interior relevant to sulfur cycling in subduction zones and the range of pressures expected within icy satellite interiors. We find evidence of crystal lattice softening, changes in elastic properties, and changes in the electric field gradients of iron atoms associated with two structural transitions occurring within the experimental pressure range. We apply these findings to icy satellite interiors, including discussion of elastic properties, modeling of ice-sulfate aggregates, and implications for tidal observations.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01255-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Complex mixtures of sulfates, silicates, and ice have been observed in a variety of planetary environments on Earth, Mars and the icy satellites of the solar system. Characterizing the properties of the corresponding compositional endmembers is important for understanding the interiors of a range of planetary bodies in which these phases are observed. To measure the electronic and vibrational properties of the pure ferrous iron endmember of the kieserite group, szomolnokite, (FeSO4⋅H2O), we have performed synchrotron 57Fe nuclear resonant inelastic and forward scattering experiments in the diamond-anvil cell up to 14.5 GPa. This pressure range covers depths within Earth’s interior relevant to sulfur cycling in subduction zones and the range of pressures expected within icy satellite interiors. We find evidence of crystal lattice softening, changes in elastic properties, and changes in the electric field gradients of iron atoms associated with two structural transitions occurring within the experimental pressure range. We apply these findings to icy satellite interiors, including discussion of elastic properties, modeling of ice-sulfate aggregates, and implications for tidal observations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶格动力学、声速和高压下的原子环境
硫酸盐、硅酸盐和冰的复杂混合物已经在地球、火星和太阳系的冰冻卫星上的各种行星环境中被观察到。表征相应组成端元的性质对于理解一系列观测到这些相的行星体的内部是很重要的。为了测量纯亚铁基基端元szomolnokite (FeSO4⋅H2O)的电子和振动特性,我们在高达14.5 GPa的金刚石砧池中进行了同步加速器57Fe核共振非弹性和正向散射实验。这个压力范围涵盖了地球内部与俯冲带硫循环有关的深度,以及冰冻卫星内部的预期压力范围。我们发现在实验压力范围内发生的两种结构转变与晶格软化、弹性性能的变化和铁原子电场梯度的变化有关。我们将这些发现应用于冰冷的卫星内部,包括对弹性特性的讨论,冰-硫酸盐聚集体的建模,以及对潮汐观测的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Key phase diagram experiment of the ZnO-SnO2 system and thermodynamic modeling of the ZnO-SnO2-TiO2 system Thermophysical properties of synthetic marialite Thermodynamic modeling of the Mn–Si–O system Fundamentals on dependence of volume on pressure and temperature High-temperature thermodynamic properties of Y-doped barium zirconates, BaZr1–xYxO3−x/2 (x = 0.1, 0.2), with perovskite-type structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1