Crystal chemistry and thermal behavior of B-, S- and Na-bearing spurrite

IF 1.2 4区 地球科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Physics and Chemistry of Minerals Pub Date : 2023-10-28 DOI:10.1007/s00269-023-01257-2
M. G. Krzhizhanovskaya, N. V. Chukanov, A. S. Mazur, L. A. Pautov, D. A. Varlamov, V. N. Bocharov
{"title":"Crystal chemistry and thermal behavior of B-, S- and Na-bearing spurrite","authors":"M. G. Krzhizhanovskaya,&nbsp;N. V. Chukanov,&nbsp;A. S. Mazur,&nbsp;L. A. Pautov,&nbsp;D. A. Varlamov,&nbsp;V. N. Bocharov","doi":"10.1007/s00269-023-01257-2","DOIUrl":null,"url":null,"abstract":"<div><p>Spurrite from Negra Mine, Queretaro, Mexico is characterized by a complex chemical composition. Its empirical formula derived based on electron microprobe, wet chemical analyses and gas chromatography of annealing products is H<sub>0.18</sub>Ca<sub>5.01</sub>Na<sub>0.05</sub>[(SiO<sub>4</sub>)<sub>1.91</sub>(SO<sub>4</sub>)<sub>0.08</sub>)][(CO<sub>3</sub>)<sub>0.71</sub>(BO<sub>3</sub>)<sub>0.28</sub>]O<sub>11</sub>. The mineral was studied by single-crystal X-ray diffraction (SCXRD) as well as infrared (IR), Raman and nuclear magnetic resonance (NMR) spectroscopy. According to spectroscopic data, boron has three-fold coordination and sulfur occurs in the mineral in the sulfate form. A significant portion of carbonate groups is substituted by BO<sub>3</sub><sup>3–</sup> anions. Charge compensation is achieved due to the substitution of a part of SiO<sub>4</sub><sup>4–</sup> anions by SO<sub>4</sub><sup>2–</sup> groups, as well as to the admixture of sodium. SCXRD shows that sodium occurs in its own site with a low occupancy. The studied sample is isotypic with the synthetic NaCa<sub>5</sub>(SiO<sub>4</sub>)<sub>2</sub>(BO<sub>3</sub>) compound. The IR spectrum shows possible partial protonation of the SiO<sub>4</sub> tetrahedra whereas bands of H<sub>2</sub>O molecules and isolated OH<sup>–</sup> anions are not observed. Thermal behavior of B,S,Na-bearing spurrite from Negra Mine has been studied using powder high-temperature X-ray diffraction (HTXRD) together with boron poor and S-free spurrite from Fuka Area (Japan). The studied samples are stable up to ~ 1200 °C and ~ 1100 °C, respectively, whereas synthetic B,S-free spurrite decomposes at about 900 °C. The thermal expansion is significantly anisotropic and is observed mainly in the direction perpendicular to the <i>ac</i> plane which is coplanar with the layers of calcium polyhedra and anionic pseudo-layers formed by (C,B)O<sub>3</sub> triangles and (Si,S)O<sub>4</sub> tetrahedra. Isomorphism and a similarity of the thermal, baric and compositional (C-B substitution) deformations of spurrite-like structures are discussed.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01257-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spurrite from Negra Mine, Queretaro, Mexico is characterized by a complex chemical composition. Its empirical formula derived based on electron microprobe, wet chemical analyses and gas chromatography of annealing products is H0.18Ca5.01Na0.05[(SiO4)1.91(SO4)0.08)][(CO3)0.71(BO3)0.28]O11. The mineral was studied by single-crystal X-ray diffraction (SCXRD) as well as infrared (IR), Raman and nuclear magnetic resonance (NMR) spectroscopy. According to spectroscopic data, boron has three-fold coordination and sulfur occurs in the mineral in the sulfate form. A significant portion of carbonate groups is substituted by BO33– anions. Charge compensation is achieved due to the substitution of a part of SiO44– anions by SO42– groups, as well as to the admixture of sodium. SCXRD shows that sodium occurs in its own site with a low occupancy. The studied sample is isotypic with the synthetic NaCa5(SiO4)2(BO3) compound. The IR spectrum shows possible partial protonation of the SiO4 tetrahedra whereas bands of H2O molecules and isolated OH anions are not observed. Thermal behavior of B,S,Na-bearing spurrite from Negra Mine has been studied using powder high-temperature X-ray diffraction (HTXRD) together with boron poor and S-free spurrite from Fuka Area (Japan). The studied samples are stable up to ~ 1200 °C and ~ 1100 °C, respectively, whereas synthetic B,S-free spurrite decomposes at about 900 °C. The thermal expansion is significantly anisotropic and is observed mainly in the direction perpendicular to the ac plane which is coplanar with the layers of calcium polyhedra and anionic pseudo-layers formed by (C,B)O3 triangles and (Si,S)O4 tetrahedra. Isomorphism and a similarity of the thermal, baric and compositional (C-B substitution) deformations of spurrite-like structures are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含B-、S-和na晶突的晶体化学和热行为
来自墨西哥克雷塔罗的Negra矿的刺辉石具有复杂的化学成分。通过电子探针、湿化学分析、气相色谱等方法推导出的经验公式为:H0.18Ca5.01Na0.05[(SiO4)1.91(SO4)0.08)][(CO3)0.71(BO3)0.28]O11。采用单晶x射线衍射(SCXRD)、红外(IR)、拉曼(Raman)和核磁共振(NMR)光谱对该矿物进行了研究。根据光谱数据,硼具有三重配位,硫以硫酸盐形式存在于矿物中。相当一部分的碳酸盐基团被BO33 -阴离子取代。电荷补偿是由于部分SiO44 -阴离子被SO42 -基团取代,以及钠的混合物。SCXRD表明,钠离子在其自身的位置发生,占用率低。所研究的样品与合成的NaCa5(SiO4)2(BO3)化合物是同型的。红外光谱显示了SiO4四面体可能的部分质子化,而没有观察到H2O分子和孤立的OH -阴离子带。采用粉末高温x射线衍射(HTXRD)技术,对日本福卡地区贫硼无S直晶和Negra矿含B、S、na直晶的热行为进行了研究。所研究的样品分别在~ 1200℃和~ 1100℃下稳定,而合成的无B, s刺激石在900℃左右分解。热膨胀具有明显的各向异性,主要发生在与钙多面体层和由(C,B)O3三角形和(Si,S)O4四面体组成的阴离子伪层共面垂直的ac面方向。讨论了类刺晶结构的热变形、压变形和组分(C-B取代)变形的同构性和相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics and Chemistry of Minerals
Physics and Chemistry of Minerals 地学-材料科学:综合
CiteScore
2.90
自引率
14.30%
发文量
43
审稿时长
3 months
期刊介绍: Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are: -Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.) -General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.) -Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.) -Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.) -Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems -Electron microscopy in support of physical and chemical studies -Computational methods in the study of the structure and properties of minerals -Mineral surfaces (experimental methods, structure and properties)
期刊最新文献
Interaction of platinum with antimony-bearing compounds in NaF fluids at 800 °C and 200 MPA High-pressure synthesis of rhenium carbide Re3C under megabar compression High pressure and high temperature Brillouin scattering measurements of pyrope single crystals using flexible CO2 laser heating systems Thermodynamics of the α-FeOOH (goethite)-ScOOH solid solution High pressure behavior of K-cymrite (KAlSi3O8·H2O) crystal structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1