Application of in-situ gamma spectrometry for radiogenic heat production estimation in the Western Himalaya, Kohistan, and Karakoram in northern Pakistan

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2023-10-27 DOI:10.1186/s40517-023-00273-3
Muhammad Anees, Jonas Kley, Bernd Leiss, David Hindle, Ali Abbas Wajid, Bianca Wagner, Mumtaz M. Shah, Elco Luijendijk
{"title":"Application of in-situ gamma spectrometry for radiogenic heat production estimation in the Western Himalaya, Kohistan, and Karakoram in northern Pakistan","authors":"Muhammad Anees,&nbsp;Jonas Kley,&nbsp;Bernd Leiss,&nbsp;David Hindle,&nbsp;Ali Abbas Wajid,&nbsp;Bianca Wagner,&nbsp;Mumtaz M. Shah,&nbsp;Elco Luijendijk","doi":"10.1186/s40517-023-00273-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Himalaya, Kohistan, and Karakoram ranges comprise Proterozoic to Cenozoic crystalline complexes exposed in northern Pakistan. Numerous hot springs in the area indicate high subsurface temperatures, prompting a need to evaluate the local contribution of radiogenic heat to the general orogenic-related elevated geothermal gradients. The current study employed a portable gamma spectrometer to estimate the in-situ radiogenic heat production in the Nanga Parbat Massif, Kohistan–Ladakh batholith, and the Karakoram batholith. Heat production in the Nanga Parbat Massif is high, with a range from 0.2 to 10.8 µWm<sup>−3</sup> and mean values of 4.6 ± 2.5 and 5.9 ± 1.9 µWm<sup>−3</sup> for gneisses and granites, respectively. By contrast, the heat production is low in the Kohistan–Ladakh batholith, ranging from 0.1 to 3.1 µWm<sup>−3</sup>, with the highest mean of 2.0 ± 0.5 µWm<sup>−3</sup> in granites. The Karakoram batholith shows a large variation in heat production, with values ranging from 0.4 to 20.3 µWm<sup>−3</sup> and the highest mean of 8.4 ± 8.3 µWm<sup>−3</sup> in granites. The in-situ radiogenic heat production values vary in different ranges and represent considerably higher values than those previously used for the thermal modeling of Himalaya. A conductive 1D thermal model suggests 93–108 °C hotter geotherms, respectively, at 10 and 20 km depths due to the thick heat-producing layer in the upper crust, resulting in a surface heat flow of 103 mWm<sup>−2</sup>. The present study provides first-order radiogenic heat production constraints for developing a thermal model for geothermal assessment.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00273-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00273-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Himalaya, Kohistan, and Karakoram ranges comprise Proterozoic to Cenozoic crystalline complexes exposed in northern Pakistan. Numerous hot springs in the area indicate high subsurface temperatures, prompting a need to evaluate the local contribution of radiogenic heat to the general orogenic-related elevated geothermal gradients. The current study employed a portable gamma spectrometer to estimate the in-situ radiogenic heat production in the Nanga Parbat Massif, Kohistan–Ladakh batholith, and the Karakoram batholith. Heat production in the Nanga Parbat Massif is high, with a range from 0.2 to 10.8 µWm−3 and mean values of 4.6 ± 2.5 and 5.9 ± 1.9 µWm−3 for gneisses and granites, respectively. By contrast, the heat production is low in the Kohistan–Ladakh batholith, ranging from 0.1 to 3.1 µWm−3, with the highest mean of 2.0 ± 0.5 µWm−3 in granites. The Karakoram batholith shows a large variation in heat production, with values ranging from 0.4 to 20.3 µWm−3 and the highest mean of 8.4 ± 8.3 µWm−3 in granites. The in-situ radiogenic heat production values vary in different ranges and represent considerably higher values than those previously used for the thermal modeling of Himalaya. A conductive 1D thermal model suggests 93–108 °C hotter geotherms, respectively, at 10 and 20 km depths due to the thick heat-producing layer in the upper crust, resulting in a surface heat flow of 103 mWm−2. The present study provides first-order radiogenic heat production constraints for developing a thermal model for geothermal assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位伽马能谱法在巴基斯坦北部西喜马拉雅、科希斯坦和喀喇昆仑地区放射成因产热估算中的应用
喜马拉雅山脉、科希斯坦山脉和喀喇昆仑山脉包括暴露在巴基斯坦北部的元古代到新生代的结晶复合体。该地区大量的温泉表明地下温度较高,因此需要评估放射性成因热对总体造山带相关的地热梯度升高的局部贡献。本研究采用便携式伽马能谱仪估算了南迦帕尔巴特地块、Kohistan-Ladakh基岩和喀喇昆仑基岩的原位放射性成因产热。南加帕尔巴特地块产热高,其范围为0.2 ~ 10.8µWm−3,片麻岩和花岗岩的产热平均值分别为4.6±2.5和5.9±1.9µWm−3。相比之下,Kohistan-Ladakh岩基的产热较低,范围为0.1 ~ 3.1µWm−3,花岗岩的产热最高,平均值为2.0±0.5µWm−3。喀喇昆仑岩基产热变化较大,产热值在0.4 ~ 20.3µWm−3之间,花岗岩产热值最高,平均为8.4±8.3µWm−3。原位放射成因产热值在不同的范围内变化,比以前用于喜马拉雅热模拟的值要高得多。导电性一维热模型表明,由于地壳上厚的产热层,在10 km和20 km深度处,地热温度分别为93-108℃,导致地表热流为103 mWm−2。本研究为地热评价热模型的建立提供了一级放射成因产热约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Pressure propagation during hydraulic stimulation: case study of the 2000 stimulation at Soultz-sous-Forêts Controlling injection conditions of a deep coaxial closed well heat exchanger to meet irregular heat demands: a field case study in Belgium (Mol) A probabilistic model-based approach to assess and minimize scaling in geothermal plants Leveraging machine learning for enhanced reservoir permeability estimation in geothermal hotspots: a case study of the Williston Basin Integrative analysis of the Aachen geothermal system (Germany) with an interdisciplinary conceptual model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1