Ciprian G. Gal, Maurizio Grasselli, Andrea Poiatti
{"title":"Allen–Cahn–Navier–Stokes–Voigt Systems with Moving Contact Lines","authors":"Ciprian G. Gal, Maurizio Grasselli, Andrea Poiatti","doi":"10.1007/s00021-023-00829-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a diffuse interface model for an incompressible binary fluid flow. The model consists of the Navier–Stokes–Voigt equations coupled with the mass-conserving Allen–Cahn equation with Flory–Huggins potential. The resulting system is subject to generalized Navier boundary conditions for the (volume averaged) fluid velocity <span>\\({{\\textbf {u}}}\\)</span> and to a dynamic contact line boundary condition for the order parameter <span>\\(\\phi \\)</span>. These boundary conditions account for the moving contact line phenomenon. We establish the existence of a global weak solution which satisfies an energy inequality. A similar result is proven for the Allen–Cahn–Navier–Stokes system. In order to obtain some higher-order regularity (w.r.t. time) we propose the Voigt approximation: in this way we are able to prove the validity of the energy identity and of the strict separation property. Thanks to this property, we can show the uniqueness of quasi-strong solutions, even in dimension three. Regularization in finite time of weak solutions is also shown.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00829-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
We consider a diffuse interface model for an incompressible binary fluid flow. The model consists of the Navier–Stokes–Voigt equations coupled with the mass-conserving Allen–Cahn equation with Flory–Huggins potential. The resulting system is subject to generalized Navier boundary conditions for the (volume averaged) fluid velocity \({{\textbf {u}}}\) and to a dynamic contact line boundary condition for the order parameter \(\phi \). These boundary conditions account for the moving contact line phenomenon. We establish the existence of a global weak solution which satisfies an energy inequality. A similar result is proven for the Allen–Cahn–Navier–Stokes system. In order to obtain some higher-order regularity (w.r.t. time) we propose the Voigt approximation: in this way we are able to prove the validity of the energy identity and of the strict separation property. Thanks to this property, we can show the uniqueness of quasi-strong solutions, even in dimension three. Regularization in finite time of weak solutions is also shown.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.