Grad-Div Stabilized Finite Element Method for Magnetohydrodynamic Flows at Low Magnetic Reynolds Numbers

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED Journal of Mathematical Fluid Mechanics Pub Date : 2025-02-12 DOI:10.1007/s00021-025-00920-8
Yao Rong, Feng Shi, Yi Li, Yuhong Zhang
{"title":"Grad-Div Stabilized Finite Element Method for Magnetohydrodynamic Flows at Low Magnetic Reynolds Numbers","authors":"Yao Rong,&nbsp;Feng Shi,&nbsp;Yi Li,&nbsp;Yuhong Zhang","doi":"10.1007/s00021-025-00920-8","DOIUrl":null,"url":null,"abstract":"<div><p>The divergence constraint of the incompressible fluids usually causes the weak robustness of standard mixed finite element methods. Grad-div stabilization is a popular technique for improving the robustness. In this paper, we theoretically show that for magnetohydrodynamic flows at large Hartmann numbers, grad-div stabilization can improve the well-posedness and robust stability of the continuous problem, and remove the effect of Hartmann number on the finite element discrete errors. Besides, applying the backward Euler method and lagging the nonlinear term, we construct a linear grad-div stabilized finite element algorithm for magnetohydrodynamics flows at low magnetic Reynolds numbers. A complete theoretical analysis of its stability and convergency is provided. Some computational experiments illustrate the validness of our algorithm and its theoretical results and also the benefits of grad-div stabilization.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00920-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The divergence constraint of the incompressible fluids usually causes the weak robustness of standard mixed finite element methods. Grad-div stabilization is a popular technique for improving the robustness. In this paper, we theoretically show that for magnetohydrodynamic flows at large Hartmann numbers, grad-div stabilization can improve the well-posedness and robust stability of the continuous problem, and remove the effect of Hartmann number on the finite element discrete errors. Besides, applying the backward Euler method and lagging the nonlinear term, we construct a linear grad-div stabilized finite element algorithm for magnetohydrodynamics flows at low magnetic Reynolds numbers. A complete theoretical analysis of its stability and convergency is provided. Some computational experiments illustrate the validness of our algorithm and its theoretical results and also the benefits of grad-div stabilization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低磁雷诺数磁流体的 Grad-Div 稳定有限元法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
期刊最新文献
Sharp Interface Limit for Compressible Immiscible Two-Phase Dynamics with Relaxation Regularity properties of a generalized Oseen evolution operator in exterior domains, with applications to the Navier–Stokes initial value problem Liouville Type Theorems for the Stationary Navier–Stokes Equations in High-Dimension Without Vanishing Condition Grad-Div Stabilized Finite Element Method for Magnetohydrodynamic Flows at Low Magnetic Reynolds Numbers Gevrey Type Error Estimates of Solutions to the Navier–Stokes Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1