{"title":"Grad-Div Stabilized Finite Element Method for Magnetohydrodynamic Flows at Low Magnetic Reynolds Numbers","authors":"Yao Rong, Feng Shi, Yi Li, Yuhong Zhang","doi":"10.1007/s00021-025-00920-8","DOIUrl":null,"url":null,"abstract":"<div><p>The divergence constraint of the incompressible fluids usually causes the weak robustness of standard mixed finite element methods. Grad-div stabilization is a popular technique for improving the robustness. In this paper, we theoretically show that for magnetohydrodynamic flows at large Hartmann numbers, grad-div stabilization can improve the well-posedness and robust stability of the continuous problem, and remove the effect of Hartmann number on the finite element discrete errors. Besides, applying the backward Euler method and lagging the nonlinear term, we construct a linear grad-div stabilized finite element algorithm for magnetohydrodynamics flows at low magnetic Reynolds numbers. A complete theoretical analysis of its stability and convergency is provided. Some computational experiments illustrate the validness of our algorithm and its theoretical results and also the benefits of grad-div stabilization.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00920-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The divergence constraint of the incompressible fluids usually causes the weak robustness of standard mixed finite element methods. Grad-div stabilization is a popular technique for improving the robustness. In this paper, we theoretically show that for magnetohydrodynamic flows at large Hartmann numbers, grad-div stabilization can improve the well-posedness and robust stability of the continuous problem, and remove the effect of Hartmann number on the finite element discrete errors. Besides, applying the backward Euler method and lagging the nonlinear term, we construct a linear grad-div stabilized finite element algorithm for magnetohydrodynamics flows at low magnetic Reynolds numbers. A complete theoretical analysis of its stability and convergency is provided. Some computational experiments illustrate the validness of our algorithm and its theoretical results and also the benefits of grad-div stabilization.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.