{"title":"Integration of distributed acoustic sensing for real-time seismic monitoring of a geothermal field","authors":"Jérôme Azzola, Katja Thiemann, Emmanuel Gaucher","doi":"10.1186/s40517-023-00272-4","DOIUrl":null,"url":null,"abstract":"<div><p>To accelerate the energy transition, the exploitation of deep geothermal reservoirs is becoming a priority to supply district heating networks in areas with high potential for geothermal applications. However, the sustainable development of the resource exploitation implies minimizing the associated risks, in particular related to induced seismicity, while optimizing operational processes. Besides, the growth of this energy sector, often supported by financial aid programs, provides resources to the industry that were not available in the past to implement advanced monitoring strategies. In this context, we present a monitoring system establishing Distributed Acoustic Sensing (DAS) as an effective component of the seismic network used for the monitoring of the geothermal field of Schäftlarnstraße (Munich, Germany). We also investigate its potential for real-time seismic monitoring in an urban environment and for risk mitigation. The monitoring system is based on a data management system linking the on-site acquisition infrastructure, including the fiber optic cable deployed in an injection well and the associated DAS interrogator, to a cloud Internet-of-Things (IoT) platform. The latter is designed to deliver both a secure storage environment for the DAS recordings and optimized computing resources for their processing. The proposed solution has been tested over a six-month period under operating conditions of the geothermal field. The survey proves the feasibility of efficiently acquiring and processing the large flow of continuous DAS data. The processing outcomes, emphasized by two detected local seismic events, demonstrate the suitability of DAS, cemented behind the casing of a flowing well, for (micro-) seismic monitoring of the geothermal site. The processing applied to the data takes advantage of the high spatial density of the acquisitions for their de-noising and for the detection of events. We find that the DAS monitoring system is capable of successfully detecting an event that could not be detected by the standard surface or shallow-borehole 3C-seismometers, despite noisy conditions associated with the urban environment and the field operation. The six-month test period demonstrates the potential of DAS to be integrated as a routine seismic monitoring component of an operating geothermal field. In addition, it highlights its advantageous role as a complement to surface seismometer-based networks, particularly in urban environments.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00272-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00272-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To accelerate the energy transition, the exploitation of deep geothermal reservoirs is becoming a priority to supply district heating networks in areas with high potential for geothermal applications. However, the sustainable development of the resource exploitation implies minimizing the associated risks, in particular related to induced seismicity, while optimizing operational processes. Besides, the growth of this energy sector, often supported by financial aid programs, provides resources to the industry that were not available in the past to implement advanced monitoring strategies. In this context, we present a monitoring system establishing Distributed Acoustic Sensing (DAS) as an effective component of the seismic network used for the monitoring of the geothermal field of Schäftlarnstraße (Munich, Germany). We also investigate its potential for real-time seismic monitoring in an urban environment and for risk mitigation. The monitoring system is based on a data management system linking the on-site acquisition infrastructure, including the fiber optic cable deployed in an injection well and the associated DAS interrogator, to a cloud Internet-of-Things (IoT) platform. The latter is designed to deliver both a secure storage environment for the DAS recordings and optimized computing resources for their processing. The proposed solution has been tested over a six-month period under operating conditions of the geothermal field. The survey proves the feasibility of efficiently acquiring and processing the large flow of continuous DAS data. The processing outcomes, emphasized by two detected local seismic events, demonstrate the suitability of DAS, cemented behind the casing of a flowing well, for (micro-) seismic monitoring of the geothermal site. The processing applied to the data takes advantage of the high spatial density of the acquisitions for their de-noising and for the detection of events. We find that the DAS monitoring system is capable of successfully detecting an event that could not be detected by the standard surface or shallow-borehole 3C-seismometers, despite noisy conditions associated with the urban environment and the field operation. The six-month test period demonstrates the potential of DAS to be integrated as a routine seismic monitoring component of an operating geothermal field. In addition, it highlights its advantageous role as a complement to surface seismometer-based networks, particularly in urban environments.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.