{"title":"Formability classifier for a TV back panel part with machine learning","authors":"Piemaan Fazily, Donghyuk Cho, Hyunsung Choi, Joon Ho Cho, Jongshin Lee, Jeong Whan Yoon","doi":"10.1007/s12289-023-01791-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a machine learning-based methodology for evaluating the formability of sheet metals. An XGBoost (eXtreme Gradient Boosting) machine learning classifier is developed to classify the formability of the TV back panel based on the forming limit curve (FLC). The input to the XGBoost model is the blank thickness and cross-sectional dimensions of the screw holes, AC (Alternating Current), and AV (Audio Visual) terminals on the TV back panel. The training dataset is generated using finite element simulations and verified through experimental strain measurements. The trained classification model maps the panel geometry to one of three formability classes: safe, marginal, and cracked. Strain values below the FLC are classified as safe, those within 5% margin of the FLC are classified as marginal, and those above are classified as cracked. The statistical accuracy and performance of the classifier are quantified using the confusion matrix and multiclass Receiver Operating Characteristic (ROC) curve, respectively. Furthermore, in order to demonstrate the practical viability of the proposed methodology, the punch radius of the screw holes is optimized using Brent's method in a Java environment. Remarkably, the optimization process is completed swiftly, taking only 3.11 s. Hence, the results demonstrate that formability for a new design can be improved based on the predictions of the machine learning model.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01791-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a machine learning-based methodology for evaluating the formability of sheet metals. An XGBoost (eXtreme Gradient Boosting) machine learning classifier is developed to classify the formability of the TV back panel based on the forming limit curve (FLC). The input to the XGBoost model is the blank thickness and cross-sectional dimensions of the screw holes, AC (Alternating Current), and AV (Audio Visual) terminals on the TV back panel. The training dataset is generated using finite element simulations and verified through experimental strain measurements. The trained classification model maps the panel geometry to one of three formability classes: safe, marginal, and cracked. Strain values below the FLC are classified as safe, those within 5% margin of the FLC are classified as marginal, and those above are classified as cracked. The statistical accuracy and performance of the classifier are quantified using the confusion matrix and multiclass Receiver Operating Characteristic (ROC) curve, respectively. Furthermore, in order to demonstrate the practical viability of the proposed methodology, the punch radius of the screw holes is optimized using Brent's method in a Java environment. Remarkably, the optimization process is completed swiftly, taking only 3.11 s. Hence, the results demonstrate that formability for a new design can be improved based on the predictions of the machine learning model.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.