Yiying Du, Ina Pundienė, Jolanta Pranckevičienė, Aleksejs Zujevs, Aleksandrs Korjakins
{"title":"Study on the Pore Structure of Lightweight Mortar with Nano-Additives","authors":"Yiying Du, Ina Pundienė, Jolanta Pranckevičienė, Aleksejs Zujevs, Aleksandrs Korjakins","doi":"10.3390/nano13222942","DOIUrl":null,"url":null,"abstract":"With the development of nanotechnology, nanomaterials have been introduced to improve the engineering properties of cement-based building materials. An abundant number of studies have been carried out on normal-weight concrete using multi-walled carbon nanotubes (MWCNTs) or nano-silica (NS) and have proven their effectiveness. Nevertheless, still very few investigations are available in terms of lightweight cement-based materials, especially when MWCNTs and NS are binarily incorporated. Thus, in this study, fly ash cenospheres (FACs) according to cement weight were applied as lightweight fine aggregates to produce lightweight mortar (LWM). MWCNTs at 0.05, 0.15, and 0.45% and NS at 0.2 and 1.0% were binarily added as modifiers. Compressive and flexural strengths were tested to investigate mechanical behaviors. A water absorption test was conducted, together with scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), to identify the impacts of the nano-additives on the pore structure of LWM. The following results were obtained: MWCNTs and NS demonstrated synergic effects on enhancing the mechanical properties of LWM. MWCNTs exerted positive impacts on reducing the porosity and improving the pore distribution at low dosages of 0.05 and 0.15%. The hybrid addition of NS further transformed large voids into small ones and introduced closed pores.","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"68 21","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano13222942","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of nanotechnology, nanomaterials have been introduced to improve the engineering properties of cement-based building materials. An abundant number of studies have been carried out on normal-weight concrete using multi-walled carbon nanotubes (MWCNTs) or nano-silica (NS) and have proven their effectiveness. Nevertheless, still very few investigations are available in terms of lightweight cement-based materials, especially when MWCNTs and NS are binarily incorporated. Thus, in this study, fly ash cenospheres (FACs) according to cement weight were applied as lightweight fine aggregates to produce lightweight mortar (LWM). MWCNTs at 0.05, 0.15, and 0.45% and NS at 0.2 and 1.0% were binarily added as modifiers. Compressive and flexural strengths were tested to investigate mechanical behaviors. A water absorption test was conducted, together with scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), to identify the impacts of the nano-additives on the pore structure of LWM. The following results were obtained: MWCNTs and NS demonstrated synergic effects on enhancing the mechanical properties of LWM. MWCNTs exerted positive impacts on reducing the porosity and improving the pore distribution at low dosages of 0.05 and 0.15%. The hybrid addition of NS further transformed large voids into small ones and introduced closed pores.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.