首页 > 最新文献

Nanomaterials最新文献

英文 中文
A Thermally Controlled Ultra-Wideband Wide Incident Angle Metamaterial Absorber with Switchable Transmission at the THz Band.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050404
Liansheng Wang, Fengkai Xin, Quanhong Fu, Dongyan Xia

We demonstrate a thermally controlled ultra-wideband wide incident angle metamaterial absorber with switchable transmission at the THz band in this paper. The underlying hybrid structure of FSS-VO2 thin films make them switchable between absorption mode and transmission mode by controlling the temperature. It can achieve ultra-wideband absorption with above 90% absorption from 1 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles at a high temperature (80 °C). At room temperature (27 °C), it acts in transmission mode with a transmission coefficient of up to 60% at 3.1278 THz. The transmission region is inside the absorption band, which is very important for practical applications. The metamaterial absorber has the advantage of easy fabrication, an ultra-wideband, a wide incident angle, switchable multi-functions, and passivity with wide application prospects on terahertz communication and radar devices.

{"title":"A Thermally Controlled Ultra-Wideband Wide Incident Angle Metamaterial Absorber with Switchable Transmission at the THz Band.","authors":"Liansheng Wang, Fengkai Xin, Quanhong Fu, Dongyan Xia","doi":"10.3390/nano15050404","DOIUrl":"10.3390/nano15050404","url":null,"abstract":"<p><p>We demonstrate a thermally controlled ultra-wideband wide incident angle metamaterial absorber with switchable transmission at the THz band in this paper. The underlying hybrid structure of FSS-VO<sub>2</sub> thin films make them switchable between absorption mode and transmission mode by controlling the temperature. It can achieve ultra-wideband absorption with above 90% absorption from 1 THz to 10 THz and exhibits excellent absorption performance under a wide range of incident and polarization angles at a high temperature (80 °C). At room temperature (27 °C), it acts in transmission mode with a transmission coefficient of up to 60% at 3.1278 THz. The transmission region is inside the absorption band, which is very important for practical applications. The metamaterial absorber has the advantage of easy fabrication, an ultra-wideband, a wide incident angle, switchable multi-functions, and passivity with wide application prospects on terahertz communication and radar devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050405
Jan W Farag, Ragaa Khalil, Edwin Avila, Young-Seok Shon

The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography-mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions.

{"title":"Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water.","authors":"Jan W Farag, Ragaa Khalil, Edwin Avila, Young-Seok Shon","doi":"10.3390/nano15050405","DOIUrl":"10.3390/nano15050405","url":null,"abstract":"<p><p>The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H<sub>2</sub>) and H<sub>2</sub>O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H<sub>2</sub>O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography-mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave Absorption Properties of Graphite Nanosheet/Carbon Nanofiber Hybrids Prepared by Intercalation Chemical Vapor Deposition.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050406
Yifan Guo, Junhua Su, Qingfeng Guo, Ling Long, Jinlong Xie, Ying Li

Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi3 nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to grow carbon nanofibers in situ via intercalation chemical vapor deposition (CVD). We discovered that amorphous carbon nanofibers (CNFs) can exfoliate and separate highly conductive graphite nanosheets (GNS) from the interlayers. Meanwhile, the carbon nanofibers eventually intertwine and encapsulate the graphite nanosheets, forming porous hybrids. This process induces significant changes in the electrical conductivity and electromagnetic parameters of the resulting GNS/CNF hybrids, enhancing the impedance matching between the hybrids and free space. Although this process slightly reduces the microwave loss capability of the hybrids, the balance between these effects significantly enhances their microwave absorption performance, particularly in the Ku band. Specifically, the optimized GNS/CNF hybrids, when mixed with paraffin at a 30 wt% ratio, exhibit a maximum microwave reflection loss of -44.1 dB at 14.6 GHz with a thickness of 1.5 mm. Their effective absorption bandwidth, defined as the frequency range with a reflection loss below -10 dB, spans the 12.5-17.4 GHz range, covering more than 80% of the Ku band. These results indicate that the GNS/CNF hybrids prepared via intercalation CVD are promising candidates for microwave absorption materials.

{"title":"Microwave Absorption Properties of Graphite Nanosheet/Carbon Nanofiber Hybrids Prepared by Intercalation Chemical Vapor Deposition.","authors":"Yifan Guo, Junhua Su, Qingfeng Guo, Ling Long, Jinlong Xie, Ying Li","doi":"10.3390/nano15050406","DOIUrl":"10.3390/nano15050406","url":null,"abstract":"<p><p>Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi<sub>3</sub> nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to grow carbon nanofibers in situ via intercalation chemical vapor deposition (CVD). We discovered that amorphous carbon nanofibers (CNFs) can exfoliate and separate highly conductive graphite nanosheets (GNS) from the interlayers. Meanwhile, the carbon nanofibers eventually intertwine and encapsulate the graphite nanosheets, forming porous hybrids. This process induces significant changes in the electrical conductivity and electromagnetic parameters of the resulting GNS/CNF hybrids, enhancing the impedance matching between the hybrids and free space. Although this process slightly reduces the microwave loss capability of the hybrids, the balance between these effects significantly enhances their microwave absorption performance, particularly in the K<sub>u</sub> band. Specifically, the optimized GNS/CNF hybrids, when mixed with paraffin at a 30 wt% ratio, exhibit a maximum microwave reflection loss of -44.1 dB at 14.6 GHz with a thickness of 1.5 mm. Their effective absorption bandwidth, defined as the frequency range with a reflection loss below -10 dB, spans the 12.5-17.4 GHz range, covering more than 80% of the K<sub>u</sub> band. These results indicate that the GNS/CNF hybrids prepared via intercalation CVD are promising candidates for microwave absorption materials.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050403
Sangkwon Park, Hafiz Muhammad Abid Yaseen

Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices.

柔性聚合物基压电纳米发电机(PENGs)能够为自供电电子设备和可穿戴设备提供清洁、可持续的能源,因而备受关注。最近,在铁电聚合物基体中加入填料被用来改善聚合物基压电纳米发电机相对较低的压电特性。在本研究中,我们研究了各种纳米填料(如二氧化钛 (TiO2)、氧化锌 (ZnO)、还原氧化石墨烯 (rGO) 和锆钛酸铅 (PZT))对聚(偏氟乙烯-共三氟乙烯)(P(VDF-TrFE))基质中含有纳米填料的纳米复合薄膜的压电性能的影响。纳米复合薄膜的制备方法是在涂有氧化铟锡的聚对苯二甲酸乙二醇酯(ITO-PET)基底上沉积在空气/水界面上的 P(VDF-TrFE)分子薄膜和纳米填料纳米颗粒(NPs),并分别使用扫描电镜、傅立叶变换红外光谱、X 射线衍射和准静态仪测量其微观结构、结晶度、β 相含量和压电系数(d33)。通过将薄膜涂层基底组装成三明治状结构,开发出了在聚合物基体中加入各种纳米填料的多种 PENG。分析了它们的压电特性,如开路输出电压(VOC)和短路电流(ISC)。结果表明,含有 4 wt% PZT 的 PENG(命名为 P-PZT-4)性能最佳,其 VOC 值为 68.5 V,d33 值为 78.2 pC/N,β 相含量为 97%。含有各种纳米填料的纳米复合薄膜的 PENG 的最大 VOC 值顺序为 PZT(68.5 V)> rGO(64.0 V)> ZnO(50.9 V)> TiO2(48.1 V)。当最佳的 PENG 被集成到一个由整流器和电容器组成的简单电路中时,它在 3 分钟内表现出了 20.6 μW/cm2 的出色二维功率密度和 531.4 μJ 的储能能力。经优化的纳米填料类型和含量的 PENG 的压电性能与文献中的 PENG 相比更为优异。这种由纳米复合薄膜组成的 PENG 具有优化的纳米填料类型和含量,显示了其在可穿戴设备等低功率电子设备电源方面的潜在应用。
{"title":"Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.","authors":"Sangkwon Park, Hafiz Muhammad Abid Yaseen","doi":"10.3390/nano15050403","DOIUrl":"10.3390/nano15050403","url":null,"abstract":"<p><p>Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO<sub>2</sub>), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (<i>d</i><sub>33</sub>) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (<i>V<sub>OC</sub></i>) and short-circuit current (<i>I<sub>SC</sub></i>), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of <i>V<sub>OC</sub></i> of 68.5 V with the <i>d</i><sub>33</sub> value of 78.2 pC/N and β-phase content of 97%. The order of the maximum <i>V<sub>OC</sub></i> values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO<sub>2</sub> (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm<sup>2</sup> and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901528/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emission Enhancement of ZnO Thin Films in Ultraviolet Wavelength Region Using Au Nano-Hemisphere on Al Mirror Structures.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050400
Shogo Tokimori, Kai Funato, Kenji Wada, Tetsuya Matsuyama, Koichi Okamoto

Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an Al2O3 thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) wavelength range below 400 nm and another in the visible range between 600 and 700 nm. This NHoM structure can be fabricated through a straightforward process involving deposition, sputtering, and annealing, enabling rapid, large-area formation. By adjusting the thickness of the Al2O3 spacer layer in the NHoM structure, we precisely controlled the localized surface plasmon resonance (LSPR) wavelength, spanning a wide range from the UV to the visible spectrum. Through this tuning, we enhanced the band-edge UV emission of the ZnO thin film by a factor of 35. Temperature-dependent measurements of emission intensity revealed that the NHoM structure increased the internal quantum efficiency (IQE) of the ZnO thin film from 8% to 19%. The heterometallic NHoM structure proposed in this study enables wide-ranging control of SPR wavelengths and demonstrates significant potential for applications in enhancing luminescence in the deep ultraviolet (DUV) region, where luminescence efficiency is typically low.

{"title":"Emission Enhancement of ZnO Thin Films in Ultraviolet Wavelength Region Using Au Nano-Hemisphere on Al Mirror Structures.","authors":"Shogo Tokimori, Kai Funato, Kenji Wada, Tetsuya Matsuyama, Koichi Okamoto","doi":"10.3390/nano15050400","DOIUrl":"10.3390/nano15050400","url":null,"abstract":"<p><p>Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an Al<sub>2</sub>O<sub>3</sub> thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) wavelength range below 400 nm and another in the visible range between 600 and 700 nm. This NHoM structure can be fabricated through a straightforward process involving deposition, sputtering, and annealing, enabling rapid, large-area formation. By adjusting the thickness of the Al<sub>2</sub>O<sub>3</sub> spacer layer in the NHoM structure, we precisely controlled the localized surface plasmon resonance (LSPR) wavelength, spanning a wide range from the UV to the visible spectrum. Through this tuning, we enhanced the band-edge UV emission of the ZnO thin film by a factor of 35. Temperature-dependent measurements of emission intensity revealed that the NHoM structure increased the internal quantum efficiency (IQE) of the ZnO thin film from 8% to 19%. The heterometallic NHoM structure proposed in this study enables wide-ranging control of SPR wavelengths and demonstrates significant potential for applications in enhancing luminescence in the deep ultraviolet (DUV) region, where luminescence efficiency is typically low.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050409
Rosa M F Baptista, Etelvina de Matos Gomes, Michael Belsley, Bernardo Almeida

In recent decades, substantial progress has been made in embedding molecules, nanocrystals, and nanograins into nanofibers, resulting in a new class of hybrid functional materials with exceptional physical properties. Among these materials, functional nanofibers exhibiting ferroelectric, piezoelectric, pyroelectric, multiferroic, and nonlinear optical characteristics have attracted considerable attention and undergone substantial improvements. This review critically examines these developments, focusing on strategies for incorporating diverse compounds into nanofibers and their impact on enhancing their physical properties, particularly ferroelectric behavior and nonlinear optical conversion. These developments have transformative potential across electronics, photonics, biomaterials, and energy harvesting. By synthesizing recent advancements in the design and application of nanofiber-embedded materials, this review seeks to highlight their potential impact on scientific research, technological innovation, and the development of next-generation devices.

{"title":"Ferroelectric and Non-Linear Optical Nanofibers by Electrospinning: From Inorganics to Molecular Crystals.","authors":"Rosa M F Baptista, Etelvina de Matos Gomes, Michael Belsley, Bernardo Almeida","doi":"10.3390/nano15050409","DOIUrl":"10.3390/nano15050409","url":null,"abstract":"<p><p>In recent decades, substantial progress has been made in embedding molecules, nanocrystals, and nanograins into nanofibers, resulting in a new class of hybrid functional materials with exceptional physical properties. Among these materials, functional nanofibers exhibiting ferroelectric, piezoelectric, pyroelectric, multiferroic, and nonlinear optical characteristics have attracted considerable attention and undergone substantial improvements. This review critically examines these developments, focusing on strategies for incorporating diverse compounds into nanofibers and their impact on enhancing their physical properties, particularly ferroelectric behavior and nonlinear optical conversion. These developments have transformative potential across electronics, photonics, biomaterials, and energy harvesting. By synthesizing recent advancements in the design and application of nanofiber-embedded materials, this review seeks to highlight their potential impact on scientific research, technological innovation, and the development of next-generation devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribological Behavior and Mechanism of Silane-Bridged h-BN/MoS2 Hybrid Filling Epoxy Solid Lubricant Coatings.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050401
Xiaoxiao Peng, Haiyan Jing, Lan Yu, Zongdeng Wu, Can Su, Ziyu Ji, Junjie Shu, Hua Tang, Mingzhu Xia, Xifeng Xia, Wu Lei, Qingli Hao

To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS2 composite was successfully synthesized using spherical MoS2 particles with lamellar self-assembly generated through the calcination method, followed by utilizing the "bridging effect" of a silane coupling agent to achieve a uniform and vertically oriented decoration of hexagonal boron nitride (h-BN) nanosheets on the MoS2 surface. The chemical composition and microstructure of the h-BN/MoS2 composite were systematically investigated. Furthermore, the enhancement effect of composites with various contents on the frictional properties of epoxy coatings was studied, and the mechanism was elucidated. The results demonstrate that the uniform decoration of h-BN enhances the chemical stability of MoS2 in friction tests, and the MoS2 prevents oxidation and maintains its self-lubricating properties. Consequently, due to the protective effect of h-BN and the synergistic interaction between h-BN and MoS2, the 5 wt % h-BN/MoS2 composite exhibited the best friction and wear resistance when incorporated into EP. Compared to pure EP coatings, its average friction coefficient and specific wear rate (0.026 and 1.5 × 10-6 mm3 N-1 m-1, respectively) were significantly reduced. Specifically, the average friction coefficient decreased by 88% and the specific wear rate decreased by 99%, highlighting the superior performance of the h-BN/MoS2-enhanced epoxy composite coating.

{"title":"Tribological Behavior and Mechanism of Silane-Bridged h-BN/MoS2 Hybrid Filling Epoxy Solid Lubricant Coatings.","authors":"Xiaoxiao Peng, Haiyan Jing, Lan Yu, Zongdeng Wu, Can Su, Ziyu Ji, Junjie Shu, Hua Tang, Mingzhu Xia, Xifeng Xia, Wu Lei, Qingli Hao","doi":"10.3390/nano15050401","DOIUrl":"10.3390/nano15050401","url":null,"abstract":"<p><p>To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS<sub>2</sub> composite was successfully synthesized using spherical MoS<sub>2</sub> particles with lamellar self-assembly generated through the calcination method, followed by utilizing the \"bridging effect\" of a silane coupling agent to achieve a uniform and vertically oriented decoration of hexagonal boron nitride (h-BN) nanosheets on the MoS<sub>2</sub> surface. The chemical composition and microstructure of the h-BN/MoS<sub>2</sub> composite were systematically investigated. Furthermore, the enhancement effect of composites with various contents on the frictional properties of epoxy coatings was studied, and the mechanism was elucidated. The results demonstrate that the uniform decoration of h-BN enhances the chemical stability of MoS<sub>2</sub> in friction tests, and the MoS<sub>2</sub> prevents oxidation and maintains its self-lubricating properties. Consequently, due to the protective effect of h-BN and the synergistic interaction between h-BN and MoS<sub>2</sub>, the 5 wt % h-BN/MoS<sub>2</sub> composite exhibited the best friction and wear resistance when incorporated into EP. Compared to pure EP coatings, its average friction coefficient and specific wear rate (0.026 and 1.5 × 10<sup>-6</sup> mm<sup>3</sup> N<sup>-1</sup> m<sup>-1</sup>, respectively) were significantly reduced. Specifically, the average friction coefficient decreased by 88% and the specific wear rate decreased by 99%, highlighting the superior performance of the h-BN/MoS<sub>2</sub>-enhanced epoxy composite coating.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Z-Scheme Heterojunction g-C3N4/WO3 for Efficient Photodegradation of Tetracycline Hydrochloride and Rhodamine B.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050410
Yongxin Lu, Shangjie Gao, Teng Ma, Jie Zhang, Haixia Liu, Wei Zhou

The construction of heterojunctions can effectively inhibit the rapid recombination of photogenerated electrons and holes in photocatalysts and offers great potential for pollutant degradation. In this study, a Z-scheme heterojunction g-C3N4/WO3 photocatalyst was synthesized using a combination of hydrothermal and calcination methods. The photocatalytic degradation performance was tested under visible light; the degradation efficiency of Rh B reached 97.9% within 15 min and that of TC-HCl reached 93.3% within 180 min. The excellent photocatalytic performance of g-C3N4/WO3 composites can be attributed to the improved absorption of visible light, the increase in surface area, and the effective separation of photogenerated electron-hole pairs. In addition, after four cycles of experiments, the photocatalytic performance of g-C3N4/WO3 did not decrease obviously, remaining at 97.8%, which proved that the g-C3N4/WO3 heterojunction had high stability and reusability. The active radical capture experiment confirmed that h+ and ·O2- played a leading role in the photocatalytic degradation. The Z-scheme heterojunction g-C3N4/WO3 designed and synthesized in this study is expected to become an efficient photocatalyst suitable for environmental pollution control.

{"title":"A Z-Scheme Heterojunction g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> for Efficient Photodegradation of Tetracycline Hydrochloride and Rhodamine B.","authors":"Yongxin Lu, Shangjie Gao, Teng Ma, Jie Zhang, Haixia Liu, Wei Zhou","doi":"10.3390/nano15050410","DOIUrl":"10.3390/nano15050410","url":null,"abstract":"<p><p>The construction of heterojunctions can effectively inhibit the rapid recombination of photogenerated electrons and holes in photocatalysts and offers great potential for pollutant degradation. In this study, a Z-scheme heterojunction g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> photocatalyst was synthesized using a combination of hydrothermal and calcination methods. The photocatalytic degradation performance was tested under visible light; the degradation efficiency of Rh B reached 97.9% within 15 min and that of TC-HCl reached 93.3% within 180 min. The excellent photocatalytic performance of g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> composites can be attributed to the improved absorption of visible light, the increase in surface area, and the effective separation of photogenerated electron-hole pairs. In addition, after four cycles of experiments, the photocatalytic performance of g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> did not decrease obviously, remaining at 97.8%, which proved that the g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> heterojunction had high stability and reusability. The active radical capture experiment confirmed that h<sup>+</sup> and ·O<sub>2</sub><sup>-</sup> played a leading role in the photocatalytic degradation. The Z-scheme heterojunction g-C<sub>3</sub>N<sub>4</sub>/WO<sub>3</sub> designed and synthesized in this study is expected to become an efficient photocatalyst suitable for environmental pollution control.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable Hydrothermal Synthesis of 1D β-Ga2O3 for Solar-Blind Ultraviolet Photodetection.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050402
Lingfeng Mao, Xiaoxuan Wang, Chaoyang Huang, Yi Ma, Feifei Qin, Wendong Lu, Gangyi Zhu, Zengliang Shi, Qiannan Cui, Chunxiang Xu

Gallium oxide (Ga2O3), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga2O3 nanorods were designed to achieve high photodetection performance due to their effective light absorption and light field confinement. Through modulating source concentration, pH value, temperature, and reaction time, 1D β-Ga2O3 nanorods were controllably fabricated using a cost-effective hydrothermal method, followed by post-annealing. The nanorods had a diameter of ~500 nm, length from 0.5 to 3 μm, and structure from nanorods to spindles, indicating that different β-Ga2O3 nanorods can be utilized controllably through tuning reaction parameters. The 1D β-Ga2O3 nanorods with a high length-to-diameter ratio were chosen to construct metal-semiconductor-metal type photodetectors. These devices exhibited a high responsivity of 8.0 × 10-4 A/W and detectivity of 4.58 × 109 Jones under 254 nm light irradiation. The findings highlighted the potential of 1D Ga2O3 nanostructures for high-performance solar-blind ultraviolet photodetectors, paving the way for future integrable deep ultraviolet optoelectronic devices.

{"title":"Controllable Hydrothermal Synthesis of 1D β-Ga<sub>2</sub>O<sub>3</sub> for Solar-Blind Ultraviolet Photodetection.","authors":"Lingfeng Mao, Xiaoxuan Wang, Chaoyang Huang, Yi Ma, Feifei Qin, Wendong Lu, Gangyi Zhu, Zengliang Shi, Qiannan Cui, Chunxiang Xu","doi":"10.3390/nano15050402","DOIUrl":"10.3390/nano15050402","url":null,"abstract":"<p><p>Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga<sub>2</sub>O<sub>3</sub> nanorods were designed to achieve high photodetection performance due to their effective light absorption and light field confinement. Through modulating source concentration, pH value, temperature, and reaction time, 1D β-Ga<sub>2</sub>O<sub>3</sub> nanorods were controllably fabricated using a cost-effective hydrothermal method, followed by post-annealing. The nanorods had a diameter of ~500 nm, length from 0.5 to 3 μm, and structure from nanorods to spindles, indicating that different β-Ga<sub>2</sub>O<sub>3</sub> nanorods can be utilized controllably through tuning reaction parameters. The 1D β-Ga<sub>2</sub>O<sub>3</sub> nanorods with a high length-to-diameter ratio were chosen to construct metal-semiconductor-metal type photodetectors. These devices exhibited a high responsivity of 8.0 × 10<sup>-4</sup> A/W and detectivity of 4.58 × 10<sup>9</sup> Jones under 254 nm light irradiation. The findings highlighted the potential of 1D Ga<sub>2</sub>O<sub>3</sub> nanostructures for high-performance solar-blind ultraviolet photodetectors, paving the way for future integrable deep ultraviolet optoelectronic devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.3390/nano15050407
Juxiang Pu, Yongqing Gong, Menghao Yang, Mali Zhao

In the field of surface synthesis, various reactions driven by the catalytic effect of metal substrates, particularly the Ullmann reaction, have been thoroughly investigated. The Wurtz reaction facilitates the coupling of alkyl halides through the removal of halogen atoms with a low energy barrier on the surface; however, the preparation of novel carbon nanostructures via the Wurtz reaction has been scarcely reported. Here, we report the successful synthesis of ethyl-bridged binaphthyl molecular chains on Ag(111) at room temperature via the Wurtz reaction. However, this structure was not obtained through low-temperature deposition followed by annealing even above room temperature. High-resolution scanning tunneling microscopy combined with density functional theory calculations reveal that the rate-limiting step of C-C homocoupling exhibits a low-energy barrier, facilitating the room-temperature synthesis of carbon nanochain structures. Moreover, the stereochemical configuration of adsorbed molecules hinders the activation of the C-X (X = Br) bond away from the metal surface and, therefore, critically influences the reaction pathways and final products. This work advances the understanding of surface-mediated reactions involving precursor molecules with stereochemical structures. Moreover, it provides an optimized approach for synthesizing novel carbon nanostructures under mild conditions.

{"title":"Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction.","authors":"Juxiang Pu, Yongqing Gong, Menghao Yang, Mali Zhao","doi":"10.3390/nano15050407","DOIUrl":"10.3390/nano15050407","url":null,"abstract":"<p><p>In the field of surface synthesis, various reactions driven by the catalytic effect of metal substrates, particularly the Ullmann reaction, have been thoroughly investigated. The Wurtz reaction facilitates the coupling of alkyl halides through the removal of halogen atoms with a low energy barrier on the surface; however, the preparation of novel carbon nanostructures via the Wurtz reaction has been scarcely reported. Here, we report the successful synthesis of ethyl-bridged binaphthyl molecular chains on Ag(111) at room temperature via the Wurtz reaction. However, this structure was not obtained through low-temperature deposition followed by annealing even above room temperature. High-resolution scanning tunneling microscopy combined with density functional theory calculations reveal that the rate-limiting step of C-C homocoupling exhibits a low-energy barrier, facilitating the room-temperature synthesis of carbon nanochain structures. Moreover, the stereochemical configuration of adsorbed molecules hinders the activation of the C-X (X = Br) bond away from the metal surface and, therefore, critically influences the reaction pathways and final products. This work advances the understanding of surface-mediated reactions involving precursor molecules with stereochemical structures. Moreover, it provides an optimized approach for synthesizing novel carbon nanostructures under mild conditions.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1