Next-generation therapeutic devices will rely on an intelligent integrated system that consolidates multiple functions into a single platform. These individual chemical components exhibit diverse physicochemical properties, demonstrating multifunctional characteristics. In this review, we focus on how the distinctive properties of upconversion nanoparticles (UCNPs), achieved via refined preparation methods, unlock novel functionalities in biomedical applications. Specifically, features such as near-infrared excitation, deep-tissue penetration, low autofluorescence, and tunable multicolor emission endow UCNPs with substantial potential in fields including deep-tissue imaging, targeted drug delivery, and photodynamic therapy. This article systematically reviews recent advances in the design and functionalization of UCNPs, elucidating their role in facilitating the development of integrated diagnostic and therapeutic platforms and fostering the establishment of intelligent responsive treatment systems. Finally, we address current technical challenges-including uniformity in large-scale production, long-term biosafety, and in vivo metabolic mechanisms-and provide insights into future interdisciplinary integration, clinical translation pathways, and their potential role in personalized medicine.
{"title":"Preparation Method of Upconversion Nanoparticles and Its Biological Application.","authors":"Liang Li, Ming Li","doi":"10.3390/nano16020148","DOIUrl":"10.3390/nano16020148","url":null,"abstract":"<p><p>Next-generation therapeutic devices will rely on an intelligent integrated system that consolidates multiple functions into a single platform. These individual chemical components exhibit diverse physicochemical properties, demonstrating multifunctional characteristics. In this review, we focus on how the distinctive properties of upconversion nanoparticles (UCNPs), achieved via refined preparation methods, unlock novel functionalities in biomedical applications. Specifically, features such as near-infrared excitation, deep-tissue penetration, low autofluorescence, and tunable multicolor emission endow UCNPs with substantial potential in fields including deep-tissue imaging, targeted drug delivery, and photodynamic therapy. This article systematically reviews recent advances in the design and functionalization of UCNPs, elucidating their role in facilitating the development of integrated diagnostic and therapeutic platforms and fostering the establishment of intelligent responsive treatment systems. Finally, we address current technical challenges-including uniformity in large-scale production, long-term biosafety, and in vivo metabolic mechanisms-and provide insights into future interdisciplinary integration, clinical translation pathways, and their potential role in personalized medicine.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chucai Guo, Qingwei Zhou, Biyuan Zheng, Hansheng Li, Fan Wu, Dan Chen, Fang Luo, Zhihong Zhu
With the rapid advancement in portable electronics, artificial intelligence, and the Internet of Things, there is an escalating demand for high-density, low-voltage non-volatile memory (NVM) technologies. Germanium (Ge) nanocrystals (NCs) have emerged as a promising candidate for NVM applications; however, traditional synthesis methodologies suffer from limitations in achieving precise control over the size and density of these nanocrystals, which exert a significant influence on device performance. This study presents an innovative Ag-catalyzed chemical vapor deposition (CVD) methodology for the synthesis of Ge NCs with precisely controllable size and density on SiO2/Si substrates, tailored for NVM applications. Scanning electron microscopy characterization confirms the successful growth of faceted Ge NCs. Electrical characterization of the fabricated devices reveals that Ge NCs grown at temperatures ranging from 700 to 1000 °C exhibit memory windows spanning from 3.0 to 6.8 V under a ±6 V bias. Notably, the device synthesized at 900 °C demonstrates an exceptional memory window of 7.0 V under a ±8 V bias. Furthermore, the Ge NC-based NVM devices exhibit excellent charge retention characteristics. Specifically, for the device with Ge NCs grown at 700 °C, the time required to retain charge from 100% to 95% of its initial value exceeds 10 years, demonstrating long-term stable charge storage capability. These findings underscore the significant potential of this approach for the development of high-performance NVM technologies.
{"title":"Tailoring Ge Nanocrystals via Ag-Catalyzed Chemical Vapor Deposition to Enhance the Performance of Non-Volatile Memory.","authors":"Chucai Guo, Qingwei Zhou, Biyuan Zheng, Hansheng Li, Fan Wu, Dan Chen, Fang Luo, Zhihong Zhu","doi":"10.3390/nano16020146","DOIUrl":"10.3390/nano16020146","url":null,"abstract":"<p><p>With the rapid advancement in portable electronics, artificial intelligence, and the Internet of Things, there is an escalating demand for high-density, low-voltage non-volatile memory (NVM) technologies. Germanium (Ge) nanocrystals (NCs) have emerged as a promising candidate for NVM applications; however, traditional synthesis methodologies suffer from limitations in achieving precise control over the size and density of these nanocrystals, which exert a significant influence on device performance. This study presents an innovative Ag-catalyzed chemical vapor deposition (CVD) methodology for the synthesis of Ge NCs with precisely controllable size and density on SiO<sub>2</sub>/Si substrates, tailored for NVM applications. Scanning electron microscopy characterization confirms the successful growth of faceted Ge NCs. Electrical characterization of the fabricated devices reveals that Ge NCs grown at temperatures ranging from 700 to 1000 °C exhibit memory windows spanning from 3.0 to 6.8 V under a ±6 V bias. Notably, the device synthesized at 900 °C demonstrates an exceptional memory window of 7.0 V under a ±8 V bias. Furthermore, the Ge NC-based NVM devices exhibit excellent charge retention characteristics. Specifically, for the device with Ge NCs grown at 700 °C, the time required to retain charge from 100% to 95% of its initial value exceeds 10 years, demonstrating long-term stable charge storage capability. These findings underscore the significant potential of this approach for the development of high-performance NVM technologies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gerardo Villa-Martínez, Julio Gregorio Mendoza-Álvarez
We propose a strain-optimized design strategy for lattice-matched InAs1-xSbx/Al1-yInySb Type-I quantum wells (QWs) that emit across the near-to mid-infrared spectrum (2-5 µm). By combining elastic strain energy minimization with band offset calculations, we identify Type-I alignment for Sb contents (x ≤ 0.40) and In contents (0.10 < y ≤ 1). At the same time, Type-II dominates at higher Sb compositions (x ≥ 0.50). Using the transfer matrix method under the effective mass approximation, we demonstrate precise emission tuning via QW thickness (LW) and compositional control, achieving a wavelength coverage of 2-5 µm with <5% strain-induced energy deviation. Our results provide a roadmap for high-efficiency infrared optoelectronic devices, addressing applications in sensing and communications technologies.
{"title":"Design of Lattice-Matched InAs<sub>1-<i>x</i></sub>Sb<i><sub>x</sub></i>/Al<sub>1-<i>y</i></sub>In<i><sub>y</sub></i>Sb Type-I Quantum Wells with Tunable Near-To Mid-Infrared Emission (2-5 μm): A Strain-Optimized Approach for Optoelectronic Applications.","authors":"Gerardo Villa-Martínez, Julio Gregorio Mendoza-Álvarez","doi":"10.3390/nano16020147","DOIUrl":"10.3390/nano16020147","url":null,"abstract":"<p><p>We propose a strain-optimized design strategy for lattice-matched InAs<sub>1-<i>x</i></sub>Sb<i><sub>x</sub></i>/Al<sub>1-<i>y</i></sub>In<i><sub>y</sub></i>Sb Type-I quantum wells (QWs) that emit across the near-to mid-infrared spectrum (2-5 µm). By combining elastic strain energy minimization with band offset calculations, we identify Type-I alignment for Sb contents (<i>x</i> ≤ 0.40) and In contents (0.10 < <i>y</i> ≤ 1). At the same time, Type-II dominates at higher Sb compositions (<i>x</i> ≥ 0.50). Using the transfer matrix method under the effective mass approximation, we demonstrate precise emission tuning via QW thickness (<i>L</i><sub>W</sub>) and compositional control, achieving a wavelength coverage of 2-5 µm with <5% strain-induced energy deviation. Our results provide a roadmap for high-efficiency infrared optoelectronic devices, addressing applications in sensing and communications technologies.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chromium-doped diamond-like carbon (DLC-Cr) nanocomposite films were successfully deposited using a high-power impulse magnetron sputtering (HiPIMS) system. The Cr content in the films was controlled by adjusting the Cr target powers. The influence of Cr content on the microstructure, mechanical properties, tribological performance, and wettability of the films was systematically investigated. The results show that the Cr content and deposition rate of the films increased with increases in the target power. The surface topography of the films evolved from smooth to rough as the Cr target increased from 10 W to 70 W. At low Cr doping rates, the film mainly exhibited an amorphous structure, whereas the nanocomposite structure was formed at proper Cr doping rates. Raman and XPS analyses revealed that Cr incorporation altered the ID/IG ratio and promoted the formation of Cr-C bonds, leading to a more graphitic and nanocomposite-like structure. The nanoindentation results show that an optimal Cr content enhances both hardness and elastic modulus, while higher Cr concentrations lead to a decline in mechanical strength due to more graphitization and decreasing stress. Tribological tests exhibited a significant reduction in the friction coefficient (0.21) and wear rate (0.63 × 10-14 m3/N·m) at a moderate Cr level. Additionally, the surface wettability evolved toward enhanced hydrophilicity with increasing Cr power, as evidenced by reduced water contact angles and increased surface energy. These findings demonstrate that controlled Cr incorporation effectively tailors the structure, stress state, and surface chemistry of DLC films, offering a tunable pathway to achieving optimal mechanical performance and tribological stability for advanced engineering applications.
{"title":"Tailoring the Microstructure and Properties of HiPIMS-Deposited DLC-Cr Nanocomposite Films via Chromium Doping.","authors":"Jicheng Ding, Wenjian Zhuang, Qingye Wang, Qi Wang, Haijuan Mei, Dongcai Zhao, Xingguang Liu, Jun Zheng","doi":"10.3390/nano16020150","DOIUrl":"10.3390/nano16020150","url":null,"abstract":"<p><p>Chromium-doped diamond-like carbon (DLC-Cr) nanocomposite films were successfully deposited using a high-power impulse magnetron sputtering (HiPIMS) system. The Cr content in the films was controlled by adjusting the Cr target powers. The influence of Cr content on the microstructure, mechanical properties, tribological performance, and wettability of the films was systematically investigated. The results show that the Cr content and deposition rate of the films increased with increases in the target power. The surface topography of the films evolved from smooth to rough as the Cr target increased from 10 W to 70 W. At low Cr doping rates, the film mainly exhibited an amorphous structure, whereas the nanocomposite structure was formed at proper Cr doping rates. Raman and XPS analyses revealed that Cr incorporation altered the I<sub>D</sub>/I<sub>G</sub> ratio and promoted the formation of Cr-C bonds, leading to a more graphitic and nanocomposite-like structure. The nanoindentation results show that an optimal Cr content enhances both hardness and elastic modulus, while higher Cr concentrations lead to a decline in mechanical strength due to more graphitization and decreasing stress. Tribological tests exhibited a significant reduction in the friction coefficient (0.21) and wear rate (0.63 × 10<sup>-14</sup> m<sup>3</sup>/N·m) at a moderate Cr level. Additionally, the surface wettability evolved toward enhanced hydrophilicity with increasing Cr power, as evidenced by reduced water contact angles and increased surface energy. These findings demonstrate that controlled Cr incorporation effectively tailors the structure, stress state, and surface chemistry of DLC films, offering a tunable pathway to achieving optimal mechanical performance and tribological stability for advanced engineering applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Yang, Lingzhi Wang, Li Luo, Wenjuan Wu, Bo Wu, Junjie Li, Jie Li, Tixian Zeng, Gengpei Xia
Lead-free transparent ferroelectric ceramics with integrated opto-electro-mechanical functionalities are pivotal for next-generation multifunctional devices. In this study, K0.48Na0.52NbO3-xLa2O3 (KNN-xLa, x = 0.005 - 0.04) ceramics were fabricated via a conventional solid-state route to investigate the La3+-induced multiscale structural evolution and its modulation of optical and electrical properties. La3+ substitution drives a critical structural transition from an anisotropic orthorhombic phase (Amm2) to a high-symmetry pseudocubic-like tetragonal phase (P4mm) for x ≥ 0.025, characterized by minimal lattice distortion (c/a = 1.0052). This enhanced structural isotropy, coupled with submicron grain refinement (<1 μm) driven by VA'-mediated solute drag, effectively suppresses light scattering. Consequently, a high-transparency plateau (T780 ≈ 53-58%, T1700 ≈ 70-72%) is achieved for 0.025 ≤ x ≤ 0.035. Simultaneously, the system undergoes a crossover from normal ferroelectric (FE) to relaxor (RF) state, governed by an FE-RF boundary at x = 0.015. While x = 0.005 exhibits robust piezoelectricity (d33 ≈ 92 pC/N), the x = 0.015 composition facilitates a transitional polar state with large strain (0.179%) and high polarization (Pm ≈ 33.3 μC/cm2, Pr ≈ 15.8 μC/cm2). Piezoresponse force microscopy (PFM) confirms the domain evolution from lamellar macro-domains to speckle-like polar nanoregions (PNRs), elucidating the intrinsic trade-off between optical transparency and piezoelectricity. This work underscores La3+ as a potent structural modifier for tailoring phase boundaries and defect chemistry, providing a cost-effective framework for developing high-performance transparent electromechanical materials.
{"title":"Multiscale Structural Modulation and Synergistic Enhancement of Transparency and Relaxor Behavior in La<sup>3+</sup>-Doped KNN Lead-Free Ceramics.","authors":"Xu Yang, Lingzhi Wang, Li Luo, Wenjuan Wu, Bo Wu, Junjie Li, Jie Li, Tixian Zeng, Gengpei Xia","doi":"10.3390/nano16020149","DOIUrl":"10.3390/nano16020149","url":null,"abstract":"<p><p>Lead-free transparent ferroelectric ceramics with integrated opto-electro-mechanical functionalities are pivotal for next-generation multifunctional devices. In this study, K<sub>0.48</sub>Na<sub>0.52</sub>NbO<sub>3</sub>-<i>x</i>La<sub>2</sub>O<sub>3</sub> (KNN-<i>x</i>La, <i>x</i> = 0.005 - 0.04) ceramics were fabricated via a conventional solid-state route to investigate the La<sup>3+</sup>-induced multiscale structural evolution and its modulation of optical and electrical properties. La<sup>3+</sup> substitution drives a critical structural transition from an anisotropic orthorhombic phase (<i>Amm</i>2) to a high-symmetry pseudocubic-like tetragonal phase (<i>P</i>4<i>mm</i>) for <i>x</i> ≥ 0.025, characterized by minimal lattice distortion (c/a = 1.0052). This enhanced structural isotropy, coupled with submicron grain refinement (<1 μm) driven by VA'-mediated solute drag, effectively suppresses light scattering. Consequently, a high-transparency plateau (<i>T</i><sub>780</sub> ≈ 53-58%, <i>T</i><sub>1700</sub> ≈ 70-72%) is achieved for 0.025 ≤ <i>x</i> ≤ 0.035. Simultaneously, the system undergoes a crossover from normal ferroelectric (FE) to relaxor (RF) state, governed by an FE-RF boundary at <i>x</i> = 0.015. While <i>x</i> = 0.005 exhibits robust piezoelectricity (<i>d</i><sub>33</sub> ≈ 92 pC/N), the <i>x</i> = 0.015 composition facilitates a transitional polar state with large strain (0.179%) and high polarization (<i>P</i><sub>m</sub> ≈ 33.3 μC/cm<sup>2</sup>, <i>P</i><sub>r</sub> ≈ 15.8 μC/cm<sup>2</sup>). Piezoresponse force microscopy (PFM) confirms the domain evolution from lamellar macro-domains to speckle-like polar nanoregions (PNRs), elucidating the intrinsic trade-off between optical transparency and piezoelectricity. This work underscores La<sup>3+</sup> as a potent structural modifier for tailoring phase boundaries and defect chemistry, providing a cost-effective framework for developing high-performance transparent electromechanical materials.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shale oil reservoirs are complex multi-scale nanoporous media where fluid transport is governed by coupled micro-mechanisms, demanding a robust modeling framework. This study presents a novel fluid-solid coupling (FSC) numerical model that rigorously integrates the three primary scale-dependent transport phenomena: adsorption in organic nanopores, slip effects in inorganic micropores, and stress-sensitive conductivity in fractures. The model provides essential quantitative insights into the dynamic interaction between fluid withdrawal and reservoir deformation. Simulation results reveal that microstructural properties dictate the reservoir's mechanical stability. Specifically, larger pore diameters and higher porosity enhance stress dissipation, promoting long-term stress relaxation and mitigating permeability decay. Crucially, tortuosity governs the mechanical response by controlling pressure transmission pathways: low tortuosity causes localized stress concentration, leading to rapid micro-channel closure, while high tortuosity ensures stress homogenization, preserving long-term permeability. Furthermore, high fracture conductivity induces a severe, heterogeneous stress field near the wellbore, which dictates early-stage mechanical failure. This work provides a powerful, mechanism-based tool for optimizing micro-structure and production strategies in unconventional resources.
{"title":"Micro- and Nanoscale Flow Mechanisms in Shale Oil: A Fluid-Solid Coupling Model Integrating Adsorption, Slip, and Stress Sensitivity.","authors":"Zupeng Liu, Zhibin Yi, Guanglong Sheng, Guang Lu, Xiangdong Xing, Xinlong Zhang","doi":"10.3390/nano16020144","DOIUrl":"10.3390/nano16020144","url":null,"abstract":"<p><p>Shale oil reservoirs are complex multi-scale nanoporous media where fluid transport is governed by coupled micro-mechanisms, demanding a robust modeling framework. This study presents a novel fluid-solid coupling (FSC) numerical model that rigorously integrates the three primary scale-dependent transport phenomena: adsorption in organic nanopores, slip effects in inorganic micropores, and stress-sensitive conductivity in fractures. The model provides essential quantitative insights into the dynamic interaction between fluid withdrawal and reservoir deformation. Simulation results reveal that microstructural properties dictate the reservoir's mechanical stability. Specifically, larger pore diameters and higher porosity enhance stress dissipation, promoting long-term stress relaxation and mitigating permeability decay. Crucially, tortuosity governs the mechanical response by controlling pressure transmission pathways: low tortuosity causes localized stress concentration, leading to rapid micro-channel closure, while high tortuosity ensures stress homogenization, preserving long-term permeability. Furthermore, high fracture conductivity induces a severe, heterogeneous stress field near the wellbore, which dictates early-stage mechanical failure. This work provides a powerful, mechanism-based tool for optimizing micro-structure and production strategies in unconventional resources.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gonul S Batibay, Sureyya Aydin Yuksel, Meral Aydin, Nergis Arsu
In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV-curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl ether acrylate (DEGEEA), and Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO), which served as a Type I photoinitiator. These formulations were designed to enable the simultaneous photopolymerization and photoreduction of metal precursors at various Ag+/Co2+ ratios, resulting in nanocomposites containing in situ-formed Ag NPs, cobalt oxide NPs, and hybrid Ag-Co3O4 nanostructures. The photochemical, magnetic, and dielectric properties of the resulting nanocomposites were evaluated in comparison with those of the pure polymer using UV-Vis and Fourier Transform Infrared Spectroscopy (FT-IR), Photo-Differential Scanning Calorimetry (Photo-DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Impedance Analysis, and Vibrating Sample Magnetometry (VSM). Photo-DSC studies revealed that the highest conversion values were obtained for the BEA-Ag1Co1, BEA-Co, and BEA-Ag1Co2 samples, demonstrating that the presence of Co3O4 NPs enhances polymerization efficiency because of cobalt species participating in redox-assisted radical generation under UV irradiation, increasing the number of initiating radicals and leading to faster curing and higher final conversion. On the other hand, the Ag NPs, due to the SPR band formation at around 400 nm, compete with photoinitiator absorbance and result in a gradual decrease in conversion values. Crystal structures of the NPs were confirmed by XRD analyses. The dielectric and magnetic characteristics of the nanocomposites suggest potential applicability in energy-storage systems, electromagnetic interference mitigation, radar-absorbing materials, and related multifunctional electronic applications.
{"title":"Tuning Ag/Co Metal Ion Composition to Control In Situ Nanoparticle Formation, Photochemical Behavior, and Magnetic-Dielectric Properties of UV-Cured Epoxy Diacrylate Nanocomposites.","authors":"Gonul S Batibay, Sureyya Aydin Yuksel, Meral Aydin, Nergis Arsu","doi":"10.3390/nano16020143","DOIUrl":"10.3390/nano16020143","url":null,"abstract":"<p><p>In this study, we report a reproducible in situ photochemical method for the simultaneous synthesis of metallic and hybrid metal/metal oxide nanoparticles (NPs) within a UV-curable polymer matrix. A series of epoxy diacrylate-based formulations (BEA) was prepared, consisting of Epoxy diacrylate, Di(Ethylene glycol)ethyl ether acrylate (DEGEEA), and Phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide (BAPO), which served as a Type I photoinitiator. These formulations were designed to enable the simultaneous photopolymerization and photoreduction of metal precursors at various Ag<sup>+</sup>/Co<sup>2+</sup> ratios, resulting in nanocomposites containing in situ-formed Ag NPs, cobalt oxide NPs, and hybrid Ag-Co<sub>3</sub>O<sub>4</sub> nanostructures. The photochemical, magnetic, and dielectric properties of the resulting nanocomposites were evaluated in comparison with those of the pure polymer using UV-Vis and Fourier Transform Infrared Spectroscopy (FT-IR), Photo-Differential Scanning Calorimetry (Photo-DSC), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Impedance Analysis, and Vibrating Sample Magnetometry (VSM). Photo-DSC studies revealed that the highest conversion values were obtained for the BEA-Ag<sub>1</sub>Co<sub>1</sub>, BEA-Co, and BEA-Ag<sub>1</sub>Co<sub>2</sub> samples, demonstrating that the presence of Co<sub>3</sub>O<sub>4</sub> NPs enhances polymerization efficiency because of cobalt species participating in redox-assisted radical generation under UV irradiation, increasing the number of initiating radicals and leading to faster curing and higher final conversion. On the other hand, the Ag NPs, due to the SPR band formation at around 400 nm, compete with photoinitiator absorbance and result in a gradual decrease in conversion values. Crystal structures of the NPs were confirmed by XRD analyses. The dielectric and magnetic characteristics of the nanocomposites suggest potential applicability in energy-storage systems, electromagnetic interference mitigation, radar-absorbing materials, and related multifunctional electronic applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lijun Chen, Jie Wu, Ke Xu, Yuanyuan Zhang, Chaoyu Chen
The combination of nanogenerator technology and traditional textile materials has given rise to textile-based triboelectric nanogenerators (T-TENGs) structured from fibers, yarns, and fabrics. Due to their lightweight, flexibility, washability, and cost-effectiveness, T-TENGs offer a promising platform for powering and sensing in next-generation wearable electronics, with particularly significant potential in smart healthcare and sports monitoring. However, the inherent electrical and structural limitations of textile materials often restrict their power output, signal stability, and sensing range, making it challenging to achieve both high electrical performance and high sensing sensitivity. This review focuses on the application of T-TENGs in smart healthcare and sports. It systematically presents recent developments in textile material selection, sensing structure, fabric design, working mechanisms, accuracy optimization, and practical application scenarios. Furthermore, it provides a critical analysis of the recurring structural and material limitations that constrain performance and offers constructive pathways to address them. Key challenges such as the low charge density of textile interfaces may be mitigated by selecting low-hygroscopicity materials, applying hydrophobic treatments, and optimizing textile structures to enhance contact efficiency and environmental stability. Issues of signal instability under dynamic deformation call for advanced structural designs that accommodate strain without compromising electrical pathways, coupled with robust signal processing algorithms. By providing a comparative analysis across materials and structures, this review aims to inform future designs and accelerate the translation of high-performance T-TENGs from laboratory research to real-world implementation.
{"title":"Recent Advances and Challenges of Textile-Based Triboelectric Nanogenerators for Smart Healthcare and Sports Applications.","authors":"Lijun Chen, Jie Wu, Ke Xu, Yuanyuan Zhang, Chaoyu Chen","doi":"10.3390/nano16020141","DOIUrl":"10.3390/nano16020141","url":null,"abstract":"<p><p>The combination of nanogenerator technology and traditional textile materials has given rise to textile-based triboelectric nanogenerators (T-TENGs) structured from fibers, yarns, and fabrics. Due to their lightweight, flexibility, washability, and cost-effectiveness, T-TENGs offer a promising platform for powering and sensing in next-generation wearable electronics, with particularly significant potential in smart healthcare and sports monitoring. However, the inherent electrical and structural limitations of textile materials often restrict their power output, signal stability, and sensing range, making it challenging to achieve both high electrical performance and high sensing sensitivity. This review focuses on the application of T-TENGs in smart healthcare and sports. It systematically presents recent developments in textile material selection, sensing structure, fabric design, working mechanisms, accuracy optimization, and practical application scenarios. Furthermore, it provides a critical analysis of the recurring structural and material limitations that constrain performance and offers constructive pathways to address them. Key challenges such as the low charge density of textile interfaces may be mitigated by selecting low-hygroscopicity materials, applying hydrophobic treatments, and optimizing textile structures to enhance contact efficiency and environmental stability. Issues of signal instability under dynamic deformation call for advanced structural designs that accommodate strain without compromising electrical pathways, coupled with robust signal processing algorithms. By providing a comparative analysis across materials and structures, this review aims to inform future designs and accelerate the translation of high-performance T-TENGs from laboratory research to real-world implementation.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanotechnology has emerged as a transformative tool in animal production, offering novel strategies to enhance productivity, health, and product quality. Among trace elements, selenium (Se) plays an essential role in antioxidant defence, immune regulation, and redox balance through its incorporation into selenoproteins. Selenium nanoparticles (SeNPs), synthesized via chemical, physical, or biological methods, have shown superior bioavailability, stability, and lower toxicity compared to traditional organic and inorganic selenium forms. This review explores the synthesis, physicochemical properties, and metabolic fate of SeNPs, emphasizing their advantages in poultry production systems. In poultry, SeNPs exhibit potent antioxidant and anti-stress effects by enhancing the activity of glutathione peroxidase, superoxide dismutase, and thioredoxin reductase, thereby mitigating lipid peroxidation and oxidative tissue damage. Their immunomodulatory effects are linked to improved lymphocyte proliferation, cytokine regulation, and increased immunoglobulin levels under normal and stress conditions. SeNP supplementation has been associated with enhanced growth performance, feed efficiency, carcass quality, and reproductive outcomes in broilers, layers, and quails. Furthermore, selenium nanoparticles have demonstrated therapeutic potential in preventing or alleviating chronic diseases such as cancer, diabetes, cardiovascular dysfunction, and neurodegenerative disorders. SeNPs also serve as biofortification agents, increasing selenium deposition in poultry meat and eggs, thus improving their nutritional value for human consumption. However, selenium's narrow safety margin requires careful dose optimization to avoid potential toxicity. This review highlights the multifaceted benefits of selenium nanoparticles in poultry nutrition and health, while underscoring the need for further studies on grey SeNPs, long-term safety, and regulatory frameworks. Integrating SeNPs into poultry production represents a promising strategy to bridge animal health, food security, and public nutrition.
{"title":"Applications of Nano-Selenium in the Poultry Industry: An Overview.","authors":"Aya Ferroudj, Hassan El-Ramady, József Prokisch","doi":"10.3390/nano16020142","DOIUrl":"10.3390/nano16020142","url":null,"abstract":"<p><p>Nanotechnology has emerged as a transformative tool in animal production, offering novel strategies to enhance productivity, health, and product quality. Among trace elements, selenium (Se) plays an essential role in antioxidant defence, immune regulation, and redox balance through its incorporation into selenoproteins. Selenium nanoparticles (SeNPs), synthesized via chemical, physical, or biological methods, have shown superior bioavailability, stability, and lower toxicity compared to traditional organic and inorganic selenium forms. This review explores the synthesis, physicochemical properties, and metabolic fate of SeNPs, emphasizing their advantages in poultry production systems. In poultry, SeNPs exhibit potent antioxidant and anti-stress effects by enhancing the activity of glutathione peroxidase, superoxide dismutase, and thioredoxin reductase, thereby mitigating lipid peroxidation and oxidative tissue damage. Their immunomodulatory effects are linked to improved lymphocyte proliferation, cytokine regulation, and increased immunoglobulin levels under normal and stress conditions. SeNP supplementation has been associated with enhanced growth performance, feed efficiency, carcass quality, and reproductive outcomes in broilers, layers, and quails. Furthermore, selenium nanoparticles have demonstrated therapeutic potential in preventing or alleviating chronic diseases such as cancer, diabetes, cardiovascular dysfunction, and neurodegenerative disorders. SeNPs also serve as biofortification agents, increasing selenium deposition in poultry meat and eggs, thus improving their nutritional value for human consumption. However, selenium's narrow safety margin requires careful dose optimization to avoid potential toxicity. This review highlights the multifaceted benefits of selenium nanoparticles in poultry nutrition and health, while underscoring the need for further studies on grey SeNPs, long-term safety, and regulatory frameworks. Integrating SeNPs into poultry production represents a promising strategy to bridge animal health, food security, and public nutrition.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng Wang, Xinlong Guo, Ziqiang Huang, Meicheng Liao, Tao Liu, Min Xu
The inner spacer module, which profoundly affects the final performance of a device, is a critical component in GAA NSFET (Gate-all-around Nanosheet Field Effect Transistor) manufacturing and necessitates systematic optimization and fundamental innovation. This work aims to develop an advanced SiGe etching process with high selectivity, uniformity and low damage to achieve an ideal inner spacer structure for logic GAA NSFETs. For three distinct dry etching technologies, ICP (Inductively Coupled Plasma Technology), RPS (Remote Plasma Source) and Gas Etching, we evaluated their potential and comparative advantages for inner spacer cavity etching under the same experimental conditions. The experimental results demonstrated that Gas Etching technology possesses the uniquely high selectivity of the SiGe sacrificial layer, making it the most suitable approach for inner spacer cavity etching to reduce Si nanosheet damage. Based on the results, in the stacked structures, the SiGe/Si selectivity ratio exhibited in Gas Etching is ~9 times higher than ICP and ~2 times higher than RPS. Through systematic optimization of pre-clean conditions, temperature and chamber pressure control, we successfully achieved a remarkable performance target of cavity etching: the average SiGe/Si etching selectivity is ~56, the inner spacer shape index is 0.92 and the local etching distance variation is only 0.65 nm across different layers. These findings provide valuable guidance for equipment selection in highly selective SiGe etching and offer critical insights into key process module development for GAA NSFETs.
{"title":"Feature Comparison and Process Optimization of Multiple Dry Etching Techniques Applied in Inner Spacer Cavity Formation of GAA NSFET.","authors":"Meng Wang, Xinlong Guo, Ziqiang Huang, Meicheng Liao, Tao Liu, Min Xu","doi":"10.3390/nano16020145","DOIUrl":"10.3390/nano16020145","url":null,"abstract":"<p><p>The inner spacer module, which profoundly affects the final performance of a device, is a critical component in GAA NSFET (Gate-all-around Nanosheet Field Effect Transistor) manufacturing and necessitates systematic optimization and fundamental innovation. This work aims to develop an advanced SiGe etching process with high selectivity, uniformity and low damage to achieve an ideal inner spacer structure for logic GAA NSFETs. For three distinct dry etching technologies, ICP (Inductively Coupled Plasma Technology), RPS (Remote Plasma Source) and Gas Etching, we evaluated their potential and comparative advantages for inner spacer cavity etching under the same experimental conditions. The experimental results demonstrated that Gas Etching technology possesses the uniquely high selectivity of the SiGe sacrificial layer, making it the most suitable approach for inner spacer cavity etching to reduce Si nanosheet damage. Based on the results, in the stacked structures, the SiGe/Si selectivity ratio exhibited in Gas Etching is ~9 times higher than ICP and ~2 times higher than RPS. Through systematic optimization of pre-clean conditions, temperature and chamber pressure control, we successfully achieved a remarkable performance target of cavity etching: the average SiGe/Si etching selectivity is ~56, the inner spacer shape index is 0.92 and the local etching distance variation is only 0.65 nm across different layers. These findings provide valuable guidance for equipment selection in highly selective SiGe etching and offer critical insights into key process module development for GAA NSFETs.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"16 2","pages":""},"PeriodicalIF":4.3,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12844779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}