首页 > 最新文献

Nanomaterials最新文献

英文 中文
Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.3390/nano15010078
Hengyi Guo, Lingtao Wang, Xuzhao Liu, Paul Mativenga, Zhu Liu, Andrew G Thomas

Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film. This was followed by loading this film with chloroplatinic acid (H2PtCl6), followed by further irradiation with an ultraviolet (UV; 355 nm) laser, resulting in pyrolysis of H2PtCl6 to form the SAC, along with a further reduction of the MOF to form a Pt-decorated laser-induced annealed MOF (Pt-LIA-ZIF8@ZIF67). The Pt-LIA-ZIF8@ZIF67 catalyst with a Pt loading of 0.86 wt. % exhibited exceptionally high activity for the HER in acidic conditions. The atomically dispersed Pt on the carbon substrate exhibited a small overpotential of 68.8 mV at 10 mA cm-2 for the hydrogen evolution reaction with a mass activity 20.52 times that of a commercial Pt/C catalyst at an overpotential of 50 mV vs. RHE. Finally, we note that the synthesis method is simple, fast, and versatile, and potentially scalable for the mass production of SACs for electrocatalytic applications.

{"title":"Laser Synthesis of Platinum Single-Atom Catalysts for Hydrogen Evolution Reaction.","authors":"Hengyi Guo, Lingtao Wang, Xuzhao Liu, Paul Mativenga, Zhu Liu, Andrew G Thomas","doi":"10.3390/nano15010078","DOIUrl":"10.3390/nano15010078","url":null,"abstract":"<p><p>Platinum (Pt)-based heterogeneous catalysts show excellent performance for the electrocatalytic hydrogen evolution reaction (HER); however, the high cost and earth paucity of Pt means that efforts are being directed to reducing Pt usage, whilst maximizing catalytic efficiency. In this work, a two-step laser annealing process was employed to synthesize Pt single-atom catalysts (SACs) on a MOF-derived carbon substrate. The laser irradiation of a metal-organic framework (MOF) film (ZIF67@ZIF8 composite) by rapid scanning of a ns pulsed infrared (IR; 1064 nm) laser across the freeze-dried MOF resulted in a metal-loaded graphitized film. This was followed by loading this film with chloroplatinic acid (H<sub>2</sub>PtCl<sub>6</sub>), followed by further irradiation with an ultraviolet (UV; 355 nm) laser, resulting in pyrolysis of H<sub>2</sub>PtCl<sub>6</sub> to form the SAC, along with a further reduction of the MOF to form a Pt-decorated laser-induced annealed MOF (Pt-LIA-ZIF8@ZIF67). The Pt-LIA-ZIF8@ZIF67 catalyst with a Pt loading of 0.86 wt. % exhibited exceptionally high activity for the HER in acidic conditions. The atomically dispersed Pt on the carbon substrate exhibited a small overpotential of 68.8 mV at 10 mA cm<sup>-2</sup> for the hydrogen evolution reaction with a mass activity 20.52 times that of a commercial Pt/C catalyst at an overpotential of 50 mV vs. RHE. Finally, we note that the synthesis method is simple, fast, and versatile, and potentially scalable for the mass production of SACs for electrocatalytic applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature Dependence of Optical Properties of MoS2 and WS2 Heterostructures Assessed by Spectroscopic Ellipsometry.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.3390/nano15010076
Hoang Tung Nguyen, Van Long Le, Thi Mai Nguyen, Xuan Khuyen Bui, Thi Giang Nguyen, Nhat Linh Nguyen, Xuan Au Nguyen, Tae Jung Kim

We report the complex dielectric function ε = ε1 + 2 of MoS2/WS2 and WS2/MoS2 heterostructures and their constituent monolayers MoS2 and WS2 for an energy range from 1.5 to 6.0 eV and temperatures from 39 to 300 K. Comparisons between the optical properties of the heterostructures and their monolayers were conducted. Critical-point (CP) energies of the heterostructures were traced back to their origins in the monolayers. Low-temperature measurements confirmed the existence of only three excitonic CPs from 1.5 to 2.5 eV due to the overlap of trion B- of the MoS2 monolayer and exciton A0 of the WS2 monolayer. Due to the dielectric screening effect, most CPs exhibit red shifts in the heterostructures compared to their monolayer counterparts.

{"title":"Temperature Dependence of Optical Properties of MoS<sub>2</sub> and WS<sub>2</sub> Heterostructures Assessed by Spectroscopic Ellipsometry.","authors":"Hoang Tung Nguyen, Van Long Le, Thi Mai Nguyen, Xuan Khuyen Bui, Thi Giang Nguyen, Nhat Linh Nguyen, Xuan Au Nguyen, Tae Jung Kim","doi":"10.3390/nano15010076","DOIUrl":"10.3390/nano15010076","url":null,"abstract":"<p><p>We report the complex dielectric function <i>ε</i> = <i>ε</i><sub>1</sub> + <i>iε</i><sub>2</sub> of MoS<sub>2</sub>/WS<sub>2</sub> and WS<sub>2</sub>/MoS<sub>2</sub> heterostructures and their constituent monolayers MoS<sub>2</sub> and WS<sub>2</sub> for an energy range from 1.5 to 6.0 eV and temperatures from 39 to 300 K. Comparisons between the optical properties of the heterostructures and their monolayers were conducted. Critical-point (CP) energies of the heterostructures were traced back to their origins in the monolayers. Low-temperature measurements confirmed the existence of only three excitonic CPs from 1.5 to 2.5 eV due to the overlap of trion <i>B</i><sup>-</sup> of the MoS<sub>2</sub> monolayer and exciton <i>A</i><sup>0</sup> of the WS<sub>2</sub> monolayer. Due to the dielectric screening effect, most CPs exhibit red shifts in the heterostructures compared to their monolayer counterparts.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Assessment of the Cyto-Genotoxicity Effects of Green-Synthesized Silver Nanoparticles and ATCBRA Insecticide on the Root System of Vicia faba.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.3390/nano15010077
May A Al-Saleh, Hanan F Al-Harbi, L A Al-Humaid, Manal A Awad

We aimed to synthesize silver nanoparticles (AgNPs) using Elettaria cardamomum (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, cardamom-AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of Vicia faba (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.3-44.3%), 1,8-cineole (10.7-28.4%), and linalool (6.4-8.6%). The successful green synthesis of AgNPs was confirmed through various micro-spectroscopic techniques, including UV-Vis spectroscopy, transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). UV-Vis analysis showed a strong peak between 420 and 430 nm, indicating the presence of AgNPs. TEM imaging revealed that the synthesized cardamom-AgNPs were monodispersed, primarily spherical, and semi-uniform in shape, with minimal aggregation. EDS analysis further confirmed the composition of the nanoparticles, with cardamom-AgNPs comprising around 60.5% by weight. Cytotoxicity was evaluated by measuring the mitotic index (MI), and genotoxicity was assessed by observing chromosomal aberrations (CAs). The roots of Vicia faba were treated for 24 and 48 h with varying concentrations of ATCBRA pesticide (0.1%, 0.3%, 0.5%, and 0.7%), aqueous cardamom extract (3%, 4%, 5%, and 6%), and green-synthesized cardamom-AgNPs (12, 25, and 60 mg). The cytogenetic analysis of MI and CA in the meristematic root tips indicated an improvement in the evaluated parameters with the cardamom extract. However, a marked reduction in mitotic activity was observed with both ATCBRA and cardamom-AgNP treatments across both time points, highlighting potential cytotoxic and genotoxic effects.

{"title":"An Assessment of the Cyto-Genotoxicity Effects of Green-Synthesized Silver Nanoparticles and ATCBRA Insecticide on the Root System of <i>Vicia faba</i>.","authors":"May A Al-Saleh, Hanan F Al-Harbi, L A Al-Humaid, Manal A Awad","doi":"10.3390/nano15010077","DOIUrl":"10.3390/nano15010077","url":null,"abstract":"<p><p>We aimed to synthesize silver nanoparticles (AgNPs) using <i>Elettaria cardamomum</i> (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, <i>cardamom</i>-AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of <i>Vicia faba</i> (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.3-44.3%), 1,8-cineole (10.7-28.4%), and linalool (6.4-8.6%). The successful green synthesis of AgNPs was confirmed through various micro-spectroscopic techniques, including UV-Vis spectroscopy, transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). UV-Vis analysis showed a strong peak between 420 and 430 nm, indicating the presence of AgNPs. TEM imaging revealed that the synthesized <i>cardamom</i>-AgNPs were monodispersed, primarily spherical, and semi-uniform in shape, with minimal aggregation. EDS analysis further confirmed the composition of the nanoparticles, with <i>cardamom</i>-AgNPs comprising around 60.5% by weight. Cytotoxicity was evaluated by measuring the mitotic index (MI), and genotoxicity was assessed by observing chromosomal aberrations (CAs). The roots of <i>Vicia faba</i> were treated for 24 and 48 h with varying concentrations of ATCBRA pesticide (0.1%, 0.3%, 0.5%, and 0.7%), aqueous cardamom extract (3%, 4%, 5%, and 6%), and green-synthesized <i>cardamom</i>-AgNPs (12, 25, and 60 mg). The cytogenetic analysis of MI and CA in the meristematic root tips indicated an improvement in the evaluated parameters with the cardamom extract. However, a marked reduction in mitotic activity was observed with both ATCBRA and <i>cardamom</i>-AgNP treatments across both time points, highlighting potential cytotoxic and genotoxic effects.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.3390/nano15010075
Vadim I Avilov, Roman V Tominov, Zakhar E Vakulov, Daniel J Rodriguez, Nikita V Polupanov, Vladimir A Smirnov

This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, Ti2O3, and TiO2 oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel. Modeling of the nanodot structure synthesis process showed that at the initial stages of growth, a conductivity channel was formed, connecting the top and bottom of the nanostructure, which became thinner over time; at approximately 640 ms, this channel broke into upper and lower nuclei, after which the upper part disappeared. Modeling of the lateral nanostructure synthesis process showed that at the initial stages of growth, a conductivity channel was also formed, which quickly disappeared and left a nucleus that moved after the moving AFM tip. The simulation of the imprint nanostructure synthesis process showed the formation of two conductivity channels at a distance corresponding to the dimensions of the template tip. After about 460 ms, both channels broke, leaving behind embryos. The nanodot, lateral, and imprint nanostructure XPS spectra confirmed the theoretical calculations presented earlier: in the near-surface layers, the TiO2 oxide was observed, with the subsequent titanium oxide nanostructure surface etching proportion of TiO2 decreasing, and proportions of Ti2O3 and TiO oxides increasing. All nanodot, lateral, and imprint nanostructures showed reproducible resistive switching over 1000 switching cycles and holding their state for 10,000 s at read operation.

{"title":"Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties.","authors":"Vadim I Avilov, Roman V Tominov, Zakhar E Vakulov, Daniel J Rodriguez, Nikita V Polupanov, Vladimir A Smirnov","doi":"10.3390/nano15010075","DOIUrl":"10.3390/nano15010075","url":null,"abstract":"<p><p>This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, Ti<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub> oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel. Modeling of the nanodot structure synthesis process showed that at the initial stages of growth, a conductivity channel was formed, connecting the top and bottom of the nanostructure, which became thinner over time; at approximately 640 ms, this channel broke into upper and lower nuclei, after which the upper part disappeared. Modeling of the lateral nanostructure synthesis process showed that at the initial stages of growth, a conductivity channel was also formed, which quickly disappeared and left a nucleus that moved after the moving AFM tip. The simulation of the imprint nanostructure synthesis process showed the formation of two conductivity channels at a distance corresponding to the dimensions of the template tip. After about 460 ms, both channels broke, leaving behind embryos. The nanodot, lateral, and imprint nanostructure XPS spectra confirmed the theoretical calculations presented earlier: in the near-surface layers, the TiO<sub>2</sub> oxide was observed, with the subsequent titanium oxide nanostructure surface etching proportion of TiO<sub>2</sub> decreasing, and proportions of Ti<sub>2</sub>O<sub>3</sub> and TiO oxides increasing. All nanodot, lateral, and imprint nanostructures showed reproducible resistive switching over 1000 switching cycles and holding their state for 10,000 s at read operation.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of Differently Structured Dental Polymer-Based Composites to Increasingly Aggressive Aging Conditions.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.3390/nano15010074
Nicoleta Ilie

Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.

Material and methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions (n = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling. CAD/CAM samples were also measured dry before the aging process. Three-point bending test, quantitative and qualitative fractography, instrumented indentation test (IIT), SEM, and reliability analyses were used. Uni- and multifactorial ANOVA, Tukey's post hoc test, and Weibull analysis were performed for statistical analysis.

Results: A significant (p < 0.001) and very strong effect of the parameter material was observed (ηP2 > 0.9). VE exhibited two to three times higher elastic moduli and hardness parameters compared to BC and AF5, which were comparable. Strength was highest in BC but was accompanied by high beam deformation. The effect of aging was comparatively smaller and was more evident in the IIT parameters than in the flexural strength or modulus. Reliability was high (m > 15) in VE and BC, regardless of aging protocol, while it was significantly reduced in AF5 following aging protocols b-d.

Conclusions: TC was the method of artificial aging with a significant impact on the measured parameters, while demineralization/remineralization cycling had little or no impact.

Clinical relevance: The degradation of composites occurred irrespective of the structuring and curing method and manifested in a low deterioration in the measured properties.

{"title":"Response of Differently Structured Dental Polymer-Based Composites to Increasingly Aggressive Aging Conditions.","authors":"Nicoleta Ilie","doi":"10.3390/nano15010074","DOIUrl":"10.3390/nano15010074","url":null,"abstract":"<p><strong>Objective: </strong>It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.</p><p><strong>Material and methods: </strong>A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions (<i>n</i> = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling. CAD/CAM samples were also measured dry before the aging process. Three-point bending test, quantitative and qualitative fractography, instrumented indentation test (IIT), SEM, and reliability analyses were used. Uni- and multifactorial ANOVA, Tukey's post hoc test, and Weibull analysis were performed for statistical analysis.</p><p><strong>Results: </strong>A significant (<i>p</i> < 0.001) and very strong effect of the parameter material was observed (η<sub>P</sub><sup>2</sup> > 0.9). VE exhibited two to three times higher elastic moduli and hardness parameters compared to BC and AF5, which were comparable. Strength was highest in BC but was accompanied by high beam deformation. The effect of aging was comparatively smaller and was more evident in the IIT parameters than in the flexural strength or modulus. Reliability was high (m > 15) in VE and BC, regardless of aging protocol, while it was significantly reduced in AF5 following aging protocols b-d.</p><p><strong>Conclusions: </strong>TC was the method of artificial aging with a significant impact on the measured parameters, while demineralization/remineralization cycling had little or no impact.</p><p><strong>Clinical relevance: </strong>The degradation of composites occurred irrespective of the structuring and curing method and manifested in a low deterioration in the measured properties.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.3390/nano15010073
Junfeng Zhao, Hao Su, Kai Li, Haijuan Mei, Junliang Zhang, Weiping Gong

Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. In this study, Cu/Dia composite materials were fabricated using the Spark Plasma Sintering (SPS) process. The results indicate that the agglomeration of diamond particles decreases with increasing particle size and that a uniform distribution is achieved at 200 μm. With an increase in the sintering temperature, the interface bonding is first optimized and then weakened, with the optimal sintering temperature being 900 °C. The addition of Cr to the Cu matrix leads to the formation of Cr7C3 after sintering, which enhances the relative density and bonding strength at the interface, transitioning it from a physical bond to a metallurgical bond. Optimizing the diamond particle size increased the thermal conductivity from 310 W/m K to 386 W/m K, while further optimizing the interface led to a significant increase to 516 W/m K, representing an overall improvement of approximately 66%.

{"title":"Interface Optimization and Thermal Conductivity of Cu/Diamond Composites by Spark Plasma Sintering Process.","authors":"Junfeng Zhao, Hao Su, Kai Li, Haijuan Mei, Junliang Zhang, Weiping Gong","doi":"10.3390/nano15010073","DOIUrl":"10.3390/nano15010073","url":null,"abstract":"<p><p>Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. In this study, Cu/Dia composite materials were fabricated using the Spark Plasma Sintering (SPS) process. The results indicate that the agglomeration of diamond particles decreases with increasing particle size and that a uniform distribution is achieved at 200 μm. With an increase in the sintering temperature, the interface bonding is first optimized and then weakened, with the optimal sintering temperature being 900 °C. The addition of Cr to the Cu matrix leads to the formation of Cr<sub>7</sub>C<sub>3</sub> after sintering, which enhances the relative density and bonding strength at the interface, transitioning it from a physical bond to a metallurgical bond. Optimizing the diamond particle size increased the thermal conductivity from 310 W/m K to 386 W/m K, while further optimizing the interface led to a significant increase to 516 W/m K, representing an overall improvement of approximately 66%.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-05 DOI: 10.3390/nano15010071
Huiping Liu, Mingkun Xiao, Jiannan Hao, Xinjie Ma, Ni Jiang, Qing Peng, Chao Ye

Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed. The traditional Basquin formula was used to predict the fatigue life of these fatigue samples. At the same time, a quantitative mechanical model related to the characteristic micro-defects parameter KAM and the Vickers hardness (Hv) was established for the S30408 stainless steel during the low cycle fatigue damage process, and the prediction accuracy of the Vickers hardness is greater than 90%, which is significant and useful for the fatigue life prediction of the 304 stainless steels used in nuclear systems and the safe operation of the reactors.

{"title":"Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.","authors":"Huiping Liu, Mingkun Xiao, Jiannan Hao, Xinjie Ma, Ni Jiang, Qing Peng, Chao Ye","doi":"10.3390/nano15010071","DOIUrl":"10.3390/nano15010071","url":null,"abstract":"<p><p>Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed. The traditional Basquin formula was used to predict the fatigue life of these fatigue samples. At the same time, a quantitative mechanical model related to the characteristic micro-defects parameter KAM and the Vickers hardness (H<sub>v</sub>) was established for the S30408 stainless steel during the low cycle fatigue damage process, and the prediction accuracy of the Vickers hardness is greater than 90%, which is significant and useful for the fatigue life prediction of the 304 stainless steels used in nuclear systems and the safe operation of the reactors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MoTe2 Photodetector for Integrated Lithium Niobate Photonics.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-05 DOI: 10.3390/nano15010072
Qiaonan Dong, Xinxing Sun, Lang Gao, Yong Zheng, Rongbo Wu, Ya Cheng

The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe2 on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band. The lithium-niobate-on-insulator waveguides and micro-ring resonator are fabricated using the femtosecond laser photolithography-assisted chemical-mechanical etching method. The lithium niobate waveguide-integrated MoTe2 presents an absorption coefficient of 72% and a transmission loss of 0.27 dB µm-1 at 1550 nm. The on-chip photodetector exhibits a responsivity of 1 mA W-1 at a bias voltage of 20 V, a low dark current of 1.6 nA, and a photo-dark current ratio of 108 W-1. Due to effective waveguide coupling and interaction with MoTe2, the generated photocurrent is approximately 160 times higher than that of free-space light irradiation. Furthermore, we demonstrate a wavelength-selective photonic device by integrating the photodetector and micro-ring resonator with a quality factor of 104 on the same chip, suggesting potential applications in the field of on-chip spectrometers and biosensors.

{"title":"MoTe<sub>2</sub> Photodetector for Integrated Lithium Niobate Photonics.","authors":"Qiaonan Dong, Xinxing Sun, Lang Gao, Yong Zheng, Rongbo Wu, Ya Cheng","doi":"10.3390/nano15010072","DOIUrl":"10.3390/nano15010072","url":null,"abstract":"<p><p>The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe<sub>2</sub> on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band. The lithium-niobate-on-insulator waveguides and micro-ring resonator are fabricated using the femtosecond laser photolithography-assisted chemical-mechanical etching method. The lithium niobate waveguide-integrated MoTe<sub>2</sub> presents an absorption coefficient of 72% and a transmission loss of 0.27 dB µm<sup>-1</sup> at 1550 nm. The on-chip photodetector exhibits a responsivity of 1 mA W<sup>-1</sup> at a bias voltage of 20 V, a low dark current of 1.6 nA, and a photo-dark current ratio of 10<sup>8</sup> W<sup>-1</sup>. Due to effective waveguide coupling and interaction with MoTe<sub>2</sub>, the generated photocurrent is approximately 160 times higher than that of free-space light irradiation. Furthermore, we demonstrate a wavelength-selective photonic device by integrating the photodetector and micro-ring resonator with a quality factor of 10<sup>4</sup> on the same chip, suggesting potential applications in the field of on-chip spectrometers and biosensors.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation Study of Low-Dose 4D-STEM Phase Contrast Techniques at the Nanoscale in SEM.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-04 DOI: 10.3390/nano15010070
Zvonimír Jílek, Tomáš Radlička, Vladislav Krzyžánek

Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE). We simulate the four-dimensional scanning transmission electron microscopy (4D-STEM) datasets for specific parameters corresponding to a scanning electron microscope (SEM) with an immersive objective and a given pixelated detector. The performance of these phase contrast techniques is analyzed using a contrast transfer function. Simulated datasets from a sample consisting of graphene sheets and carbon nanotubes are used for iCOM and ePIE reconstructions for two aperture sizes and two electron doses. We highlight the influence of aperture size, showing that for a smaller aperture, the radiation dose is spent mostly on larger sample features, which may aid in imaging sensitive samples while minimizing radiation damage.

{"title":"Simulation Study of Low-Dose 4D-STEM Phase Contrast Techniques at the Nanoscale in SEM.","authors":"Zvonimír Jílek, Tomáš Radlička, Vladislav Krzyžánek","doi":"10.3390/nano15010070","DOIUrl":"10.3390/nano15010070","url":null,"abstract":"<p><p>Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE). We simulate the four-dimensional scanning transmission electron microscopy (4D-STEM) datasets for specific parameters corresponding to a scanning electron microscope (SEM) with an immersive objective and a given pixelated detector. The performance of these phase contrast techniques is analyzed using a contrast transfer function. Simulated datasets from a sample consisting of graphene sheets and carbon nanotubes are used for iCOM and ePIE reconstructions for two aperture sizes and two electron doses. We highlight the influence of aperture size, showing that for a smaller aperture, the radiation dose is spent mostly on larger sample features, which may aid in imaging sensitive samples while minimizing radiation damage.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice.
IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-04 DOI: 10.3390/nano15010069
Chaoyu Zhou, Haiyan Wu, Lei Zhang, Xiao Xiao, Xiaodan Wang, Mingju Li, Runqiu Cai, Jia You, Qi Chen, Yifei Yang, Xinyuan Tian, Qianyu Bai, Yinzhu Chen, Huihui Bao, Tianlong Liu

Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.1 mg/mL, and 1 mg/mL. The results show that PS-NP exposure during lactation and juvenile periods caused delayed weight gain and impaired organ development, particularly in the liver and kidneys, without causing functional abnormalities or toxic injuries. The primary toxicity of PS-NPs was observed in the intestinal tract, including shortened villi, disrupted tight junctions, inhibited epithelial cell proliferation, and oxidative stress responses. These findings highlight the importance of evaluating the developmental toxicity of nanoplastics at environmentally relevant doses.

{"title":"Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice.","authors":"Chaoyu Zhou, Haiyan Wu, Lei Zhang, Xiao Xiao, Xiaodan Wang, Mingju Li, Runqiu Cai, Jia You, Qi Chen, Yifei Yang, Xinyuan Tian, Qianyu Bai, Yinzhu Chen, Huihui Bao, Tianlong Liu","doi":"10.3390/nano15010069","DOIUrl":"10.3390/nano15010069","url":null,"abstract":"<p><p>Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.1 mg/mL, and 1 mg/mL. The results show that PS-NP exposure during lactation and juvenile periods caused delayed weight gain and impaired organ development, particularly in the liver and kidneys, without causing functional abnormalities or toxic injuries. The primary toxicity of PS-NPs was observed in the intestinal tract, including shortened villi, disrupted tight junctions, inhibited epithelial cell proliferation, and oxidative stress responses. These findings highlight the importance of evaluating the developmental toxicity of nanoplastics at environmentally relevant doses.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142951922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1