Analyzing the Spread of Misinformation on Social Networks: A Process and Software Architecture for Detection and Analysis

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers Pub Date : 2023-11-14 DOI:10.3390/computers12110232
Zafer Duzen, Mirela Riveni, Mehmet S. Aktas
{"title":"Analyzing the Spread of Misinformation on Social Networks: A Process and Software Architecture for Detection and Analysis","authors":"Zafer Duzen, Mirela Riveni, Mehmet S. Aktas","doi":"10.3390/computers12110232","DOIUrl":null,"url":null,"abstract":"The rapid dissemination of misinformation on social networks, particularly during public health crises like the COVID-19 pandemic, has become a significant concern. This study investigates the spread of misinformation on social network data using social network analysis (SNA) metrics, and more generally by using well known network science metrics. Moreover, we propose a process design that utilizes social network data from Twitter, to analyze the involvement of non-trusted accounts in spreading misinformation supported by a proof-of-concept prototype. The proposed prototype includes modules for data collection, data preprocessing, network creation, centrality calculation, community detection, and misinformation spreading analysis. We conducted an experimental study on a COVID-19-related Twitter dataset using the modules. The results demonstrate the effectiveness of our approach and process steps, and provides valuable insight into the application of network science metrics on social network data for analysing various influence-parameters in misinformation spreading.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"28 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid dissemination of misinformation on social networks, particularly during public health crises like the COVID-19 pandemic, has become a significant concern. This study investigates the spread of misinformation on social network data using social network analysis (SNA) metrics, and more generally by using well known network science metrics. Moreover, we propose a process design that utilizes social network data from Twitter, to analyze the involvement of non-trusted accounts in spreading misinformation supported by a proof-of-concept prototype. The proposed prototype includes modules for data collection, data preprocessing, network creation, centrality calculation, community detection, and misinformation spreading analysis. We conducted an experimental study on a COVID-19-related Twitter dataset using the modules. The results demonstrate the effectiveness of our approach and process steps, and provides valuable insight into the application of network science metrics on social network data for analysing various influence-parameters in misinformation spreading.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析社交网络上错误信息的传播:一种检测和分析的过程和软件架构
社交网络上错误信息的迅速传播,特别是在COVID-19大流行等公共卫生危机期间,已成为一个重大问题。本研究使用社会网络分析(SNA)指标,更普遍地使用众所周知的网络科学指标,调查社交网络数据中错误信息的传播。此外,我们提出了一种利用Twitter社交网络数据的流程设计,通过概念验证原型来分析不受信任帐户在传播错误信息中的参与程度。提出的原型包括数据收集、数据预处理、网络创建、中心性计算、社区检测和错误信息传播分析等模块。我们使用这些模块对与covid -19相关的Twitter数据集进行了实验研究。结果证明了我们的方法和流程步骤的有效性,并为网络科学指标在社交网络数据上的应用提供了有价值的见解,以分析错误信息传播中的各种影响参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
期刊最新文献
Advanced Road Safety: Collective Perception for Probability of Collision Estimation of Connected Vehicles Forecasting of Bitcoin Illiquidity Using High-Dimensional and Textual Features Mining Negative Associations from Medical Databases Considering Frequent, Regular, Closed and Maximal Patterns Faraway, so Close: Perceptions of the Metaverse on the Edge of Madness Blockchain-Powered Gaming: Bridging Entertainment with Serious Game Objectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1