Optimal Polynomial-time Compression for Boolean Max CSP

IF 0.8 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computation Theory Pub Date : 2023-09-26 DOI:10.1145/3624704
Bart M.P. Jansen, Michał Włodarczyk
{"title":"Optimal Polynomial-time Compression for Boolean Max CSP","authors":"Bart M.P. Jansen, Michał Włodarczyk","doi":"10.1145/3624704","DOIUrl":null,"url":null,"abstract":"In the Boolean maximum constraint satisfaction problem – Max CSP ( Γ ) – one is given a collection of weighted applications of constraints from a finite constraint language Γ , over a common set of variables, and the goal is to assign Boolean values to the variables so that the total weight of satisfied constraints is maximized. There exists a concise dichotomy theorem providing a criterion on Γ for the problem to be polynomial-time solvable and stating that otherwise it becomes NP-hard. We study the NP-hard cases through the lens of kernelization and provide a complete characterization of Max CSP ( Γ ) with respect to the optimal compression size. Namely, we prove that Max CSP ( Γ ) parameterized by the number of variables n is either polynomial-time solvable, or there exists an integer d ≥ 2 depending on Γ , such that: (1) An instance of Max CSP ( Γ ) can be compressed into an equivalent instance with \\(\\mathcal {O}(n^d\\log n) \\) bits in polynomial time, (2) Max CSP( Γ ) does not admit such a compression to \\(\\mathcal {O}(n^{d-\\varepsilon }) \\) bits unless NP⊆co-NP/poly. Our reductions are based on interpreting constraints as multilinear polynomials combined with the framework of ‘constraint implementations’, formerly used in the context of APX-hardness. As another application of our reductions, we reveal tight connections between optimal running times for solving Max CSP( Γ ) . More precisely, we show that obtaining a running time of the form \\(\\mathcal {O}(2^{(1-\\varepsilon)n}) \\) for particular classes of Max CSP s is as hard as breaching this barrier for Max d - SAT for some d .","PeriodicalId":44045,"journal":{"name":"ACM Transactions on Computation Theory","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3624704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

In the Boolean maximum constraint satisfaction problem – Max CSP ( Γ ) – one is given a collection of weighted applications of constraints from a finite constraint language Γ , over a common set of variables, and the goal is to assign Boolean values to the variables so that the total weight of satisfied constraints is maximized. There exists a concise dichotomy theorem providing a criterion on Γ for the problem to be polynomial-time solvable and stating that otherwise it becomes NP-hard. We study the NP-hard cases through the lens of kernelization and provide a complete characterization of Max CSP ( Γ ) with respect to the optimal compression size. Namely, we prove that Max CSP ( Γ ) parameterized by the number of variables n is either polynomial-time solvable, or there exists an integer d ≥ 2 depending on Γ , such that: (1) An instance of Max CSP ( Γ ) can be compressed into an equivalent instance with \(\mathcal {O}(n^d\log n) \) bits in polynomial time, (2) Max CSP( Γ ) does not admit such a compression to \(\mathcal {O}(n^{d-\varepsilon }) \) bits unless NP⊆co-NP/poly. Our reductions are based on interpreting constraints as multilinear polynomials combined with the framework of ‘constraint implementations’, formerly used in the context of APX-hardness. As another application of our reductions, we reveal tight connections between optimal running times for solving Max CSP( Γ ) . More precisely, we show that obtaining a running time of the form \(\mathcal {O}(2^{(1-\varepsilon)n}) \) for particular classes of Max CSP s is as hard as breaching this barrier for Max d - SAT for some d .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
布尔Max CSP的最优多项式时间压缩
在布尔最大约束满足问题Max CSP (Γ)中,给定了来自有限约束语言Γ的约束加权应用的集合,在一组公共变量上,目标是为变量分配布尔值,以便使满足约束的总权重最大化。存在一个简洁的二分定理,在Γ上给出了问题是多项式时间可解的判据,否则问题就变成np困难。我们通过核化透镜研究了NP-hard情况,并提供了关于最佳压缩大小的Max CSP (Γ)的完整表征。即证明由变量数n参数化的Max CSP(Γ)是多项式时间可解的,或者存在依赖于Γ的整数d≥2,使得:(1)Max CSP(Γ)的一个实例可以在多项式时间内压缩成一个具有\(\mathcal {O}(n^d\log n) \) bits的等价实例,(2)Max CSP(Γ)不允许压缩到\(\mathcal {O}(n^{d-\varepsilon }) \) bits,除非NP co-NP/poly。我们的缩减是基于将约束解释为与“约束实现”框架相结合的多线性多项式,以前在apx硬度上下文中使用。作为我们缩减的另一个应用,我们揭示了解决Max CSP的最佳运行时间之间的紧密联系(Γ)。更准确地说,我们表明,对于特定类别的Max CSP,获得\(\mathcal {O}(2^{(1-\varepsilon)n}) \)形式的运行时间与突破Max d - SAT在某些d中的这个障碍一样困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Computation Theory
ACM Transactions on Computation Theory COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.30
自引率
0.00%
发文量
10
期刊最新文献
Small-Space Spectral Sparsification via Bounded-Independence Sampling Tight Sum-of-Squares lower bounds for binary polynomial optimization problems Optimal Polynomial-time Compression for Boolean Max CSP On p -Group Isomorphism: search-to-decision, counting-to-decision, and nilpotency class reductions via tensors Quantum communication complexity of linear regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1