Melanocortin 4 receptor signaling in Sim-1 neurons permits sexual receptivity in female mice

IF 5.3 2区 医学 Q1 PHYSIOLOGY Physiology Pub Date : 2023-05-01 DOI:10.1152/physiol.2023.38.s1.5729417
JH Hill, Mitchell Harberson, Erin Semple
{"title":"Melanocortin 4 receptor signaling in Sim-1 neurons permits sexual receptivity in female mice","authors":"JH Hill, Mitchell Harberson, Erin Semple","doi":"10.1152/physiol.2023.38.s1.5729417","DOIUrl":null,"url":null,"abstract":"Female sexual dysfunction affects approximately 40% of women in the United States, yet few therapeutic options exist for these patients. The melanocortin system is a new treatment target for Hypoactive Sexual Desire Disorder (HSDD), but the neuronal pathways involved are unclear. In this study, female MC4R knockout mice lacking melanocortin 4 receptors (MC4Rs) paired with males were found to approach males less and have reduced receptivity to copulation, as indicated by a low lordosis quotient. The mice were then bred to express MC4Rs exclusively on Sim1 neurons (tbMC4RSim1 mice) or on oxytocin neurons (tbMC4ROxt mice). Lordosis behavior was normalized in tbMC4RSim1 mice and improved in tbMC4ROxt mice. In contrast, approach behavior was unchanged in tbMC4RSim1 mice but greatly increased in tbMC4ROxt animals. The changes were independent of melanocortin-driven metabolic effects. These results implicate MC4R signaling in Oxt neurons in appetitive behaviors and MC4R signaling in Sim1 neurons in female sexual receptivity, while suggesting melanocortin-driven sexual function does not rely on metabolic neural circuits. R01HD081792 This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"6 1","pages":"0"},"PeriodicalIF":5.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/physiol.2023.38.s1.5729417","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Female sexual dysfunction affects approximately 40% of women in the United States, yet few therapeutic options exist for these patients. The melanocortin system is a new treatment target for Hypoactive Sexual Desire Disorder (HSDD), but the neuronal pathways involved are unclear. In this study, female MC4R knockout mice lacking melanocortin 4 receptors (MC4Rs) paired with males were found to approach males less and have reduced receptivity to copulation, as indicated by a low lordosis quotient. The mice were then bred to express MC4Rs exclusively on Sim1 neurons (tbMC4RSim1 mice) or on oxytocin neurons (tbMC4ROxt mice). Lordosis behavior was normalized in tbMC4RSim1 mice and improved in tbMC4ROxt mice. In contrast, approach behavior was unchanged in tbMC4RSim1 mice but greatly increased in tbMC4ROxt animals. The changes were independent of melanocortin-driven metabolic effects. These results implicate MC4R signaling in Oxt neurons in appetitive behaviors and MC4R signaling in Sim1 neurons in female sexual receptivity, while suggesting melanocortin-driven sexual function does not rely on metabolic neural circuits. R01HD081792 This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sim-1神经元中的黑素皮质素4受体信号传导允许雌性小鼠的性接受性
在美国,女性性功能障碍影响了大约40%的女性,但针对这些患者的治疗选择很少。黑素皮质素系统是治疗性欲减退症(HSDD)的新靶点,但涉及的神经通路尚不清楚。在这项研究中,缺乏黑素皮质素4受体(MC4Rs)的雌性MC4R敲除小鼠与雄性配对时,发现接近雄性的次数减少,对交配的接受度降低,前凸商数较低。然后培养小鼠,使其仅在Sim1神经元(tbMC4RSim1小鼠)或催产素神经元(tbMC4ROxt小鼠)上表达MC4Rs。tbMC4RSim1小鼠前凸行为正常化,tbMC4ROxt小鼠前凸行为改善。相比之下,tbMC4RSim1小鼠的接近行为没有变化,而tbMC4ROxt小鼠的接近行为则大大增加。这些变化与黑素皮质素驱动的代谢作用无关。这些结果提示,在食欲行为中,Oxt神经元中存在MC4R信号,在雌性性接受中,Sim1神经元中存在MC4R信号,而黑素皮质素驱动的性功能并不依赖于代谢神经回路。这是在2023年美国生理学峰会会议上发表的全文摘要,仅以HTML格式提供。此摘要没有附加版本或附加内容。生理学没有参与同行评议过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
期刊最新文献
Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Buoyancy Regulation in Insects. Microtubule Reorganization and Quiescence: an Intertwined Relationship. mTORC1 and 2 Adrenergic Regulation and Function in Brown Adipose Tissue. Olfactory Development and Dysfunction: Involvement of Microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1