PCA-based fast point feature histogram simplification algorithm for point clouds

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2023-10-26 DOI:10.1002/eng2.12800
Zhong Gan, Boyu Ma, Zihao Ling
{"title":"PCA-based fast point feature histogram simplification algorithm for point clouds","authors":"Zhong Gan,&nbsp;Boyu Ma,&nbsp;Zihao Ling","doi":"10.1002/eng2.12800","DOIUrl":null,"url":null,"abstract":"<p>In order to realize efficient and lightweight digital inspection technology, we propose an improved method to simplification large volumes of scanned point cloud data of aircraft integral panels and facilitate subsequent processing. Fast Point Feature Histogram (FPFH) method is utilized to extract feature information and optimize the Principal Component Analysis (PCA) algorithm to calculate the contribution degree to transform into principal components, yielding PCA-based FPFH features. Next, based on PCA-based FPFH features, we classify the point cloud data into non-feature and feature point clouds and extract the feature point clouds through random downsampling to obtain simplified non-feature point clouds, extract the feature point clouds to retain their boundary integrity, and downsample the remaining feature point clouds by curvature to obtain the simplified feature point clouds. Finally, we combine the two to obtain the final simplified panel point cloud data within 30 s. To evaluate the simplification effect, we adopt a standardized information entropy-based point cloud simplification accuracy evaluation method based on the simplification rate. Our method achieves an information entropy of more than 0.95, indicating its effectiveness in simplification point cloud data for efficient and lightweight digital inspection technology.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12800","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to realize efficient and lightweight digital inspection technology, we propose an improved method to simplification large volumes of scanned point cloud data of aircraft integral panels and facilitate subsequent processing. Fast Point Feature Histogram (FPFH) method is utilized to extract feature information and optimize the Principal Component Analysis (PCA) algorithm to calculate the contribution degree to transform into principal components, yielding PCA-based FPFH features. Next, based on PCA-based FPFH features, we classify the point cloud data into non-feature and feature point clouds and extract the feature point clouds through random downsampling to obtain simplified non-feature point clouds, extract the feature point clouds to retain their boundary integrity, and downsample the remaining feature point clouds by curvature to obtain the simplified feature point clouds. Finally, we combine the two to obtain the final simplified panel point cloud data within 30 s. To evaluate the simplification effect, we adopt a standardized information entropy-based point cloud simplification accuracy evaluation method based on the simplification rate. Our method achieves an information entropy of more than 0.95, indicating its effectiveness in simplification point cloud data for efficient and lightweight digital inspection technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 PCA 的点云快速点特征直方图简化算法
为了实现高效、轻便的数字检测技术,我们提出了一种改进的方法来简化飞机整体面板的大量扫描点云数据并方便后续处理。利用快速点特征直方图(FPFH)方法提取特征信息,并优化主成分分析(PCA)算法,计算出转化为主成分的贡献度,从而得到基于 PCA 的 FPFH 特征。接着,根据基于 PCA 的 FPFH 特征,我们将点云数据分为非特征点云和特征点云,并通过随机下采样提取特征点云,得到简化的非特征点云;提取特征点云以保留其边界完整性,并对剩余的特征点云进行曲率下采样,得到简化的特征点云。为了评估简化效果,我们采用了基于简化率的标准化信息熵点云简化精度评估方法。我们的方法达到了 0.95 以上的信息熵,表明其在简化点云数据以实现高效、轻量级数字检测技术方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Issue Information Understanding the Effects of Manufacturing Attributes on Damage Tolerance of Additively Manufactured Parts and Exploring Synergy Among Process-Structure-Properties. A Comprehensive Review Issue Information Correction to “The Proof of Concept of Uninterrupted Push-Pull Electromagnetic Propulsion and Energy Conversion Systems for Drones and Planet Landers” Socio-economic impact of solar cooking technologies on community kitchens under different climate conditions: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1