Thermal expansion behavior of vanadium pernitride, CuAl2-type VN2, synthesized under high pressures

IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Progress in Solid State Chemistry Pub Date : 2023-12-01 DOI:10.1016/j.progsolidstchem.2023.100426
Shuto Asano , Ken Niwa , Takuya Sasaki , Masashi Hasegawa
{"title":"Thermal expansion behavior of vanadium pernitride, CuAl2-type VN2, synthesized under high pressures","authors":"Shuto Asano ,&nbsp;Ken Niwa ,&nbsp;Takuya Sasaki ,&nbsp;Masashi Hasegawa","doi":"10.1016/j.progsolidstchem.2023.100426","DOIUrl":null,"url":null,"abstract":"<div><p>CuAl<sub>2</sub>-type VN<sub>2</sub><span>, which is synthesized under high pressure, is a recoverable material at ambient conditions and has a high bulk modulus. In this study, we investigated the thermal expansion behavior of CuAl</span><sub>2</sub>-type VN<sub>2</sub> by low-temperature X-ray diffraction measurements between 109.3(5) K and 298.3(8) K. The axial thermal expansion coefficient of VN<sub>2</sub> was determined to be <em>α</em><sub><em>a</em></sub> = 2.7(9) × 10<sup>−6</sup> K<sup>−1</sup> and <em>α</em><sub><em>c</em></sub> = 17.8(12) × 10<sup>−6</sup> K<sup>−1</sup> at 298.3(8) K, which has large anisotropy similar to that of compression behavior. It is found that the small coefficient of thermal expansion of the <em>a</em>-axis is due to the negative and positive effects on the <em>a</em>-axis length with increasing temperature of the bond angles and bond lengths of VN<sub>2</sub>, respectively. As a result, VN<sub>2</sub> exhibits very large anisotropic thermal expansion behavior.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"72 ","pages":"Article 100426"},"PeriodicalIF":9.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678623000377","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

CuAl2-type VN2, which is synthesized under high pressure, is a recoverable material at ambient conditions and has a high bulk modulus. In this study, we investigated the thermal expansion behavior of CuAl2-type VN2 by low-temperature X-ray diffraction measurements between 109.3(5) K and 298.3(8) K. The axial thermal expansion coefficient of VN2 was determined to be αa = 2.7(9) × 10−6 K−1 and αc = 17.8(12) × 10−6 K−1 at 298.3(8) K, which has large anisotropy similar to that of compression behavior. It is found that the small coefficient of thermal expansion of the a-axis is due to the negative and positive effects on the a-axis length with increasing temperature of the bond angles and bond lengths of VN2, respectively. As a result, VN2 exhibits very large anisotropic thermal expansion behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压合成过氮化钒cual2型VN2的热膨胀行为
高压合成的cual2型VN2是一种常温可回收材料,具有较高的体积模量。在109.3(5)K ~ 298.3(8) K范围内,通过低温x射线衍射测量研究了cual2型VN2的热膨胀行为。在298.3(8)K范围内,VN2的轴向热膨胀系数为αa = 2.7(9) × 10−6 K−1,αc = 17.8(12) × 10−6 K−1,具有与压缩行为相似的大的各向异性。研究发现,a轴的热膨胀系数较小是由于VN2的键角和键长分别随着温度的升高对a轴长度产生了负影响和正影响。结果表明,VN2表现出非常大的各向异性热膨胀行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Solid State Chemistry
Progress in Solid State Chemistry 化学-无机化学与核化学
CiteScore
14.10
自引率
3.30%
发文量
12
期刊介绍: Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.
期刊最新文献
Boosting the phosphorus uptake of La2(CO3)3·8H2O based adsorbents via sodium addition: Relationship between crystal structure and adsorption capacity Investigation of Sr-substituted Ba1-xSrx(Zn1/3Nb2/3)O3 complex perovskites: Structural, electrical and electrochemical properties New solid solutions with the R-type hexaferrite structure, BaFe4-xMxM’2O11 (M = In, Sc; M’ = Ti, Sn) Novel Mn5+-activated Ba2TiO4 phosphor emitting in the second near-infrared biological window From layered 2D carbon to 3D tetrahedral allotropes C12 and C18 with physical properties related to diamond: Crystal chemistry and DFT investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1