首页 > 最新文献

Progress in Solid State Chemistry最新文献

英文 中文
Beyond graphene basics: A holistic review of electronic structure, synthesis strategies, properties, and graphene-based electrode materials for supercapacitor applications
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2025-04-16 DOI: 10.1016/j.progsolidstchem.2025.100519
Sachin Kumar Yadav, Anil Kumar, Neeraj Mehta
This review presents a comprehensive analysis of graphene-based electrode materials for supercapacitor application, focusing on electronic structure, synthesis strategies, and key attributes. The remarkable 2D-structure of graphene, characterized by sp2 hybridized carbon atoms, confers exceptional electronic mobility (100000 cm2V−1s−1), large specific surface area (2600 m2g-1), and mechanical flexibility (2.4 ± 0.4 TPa), making it an ideal contender for next-generation energy storage devices. We have discussed various synthesis strategies, including CVD, mechanical exfoliation, and chemical reduction, emphasizing their impact on the electrochemical performance of graphene electrodes. The integration of graphene with other nanomaterials, such as metal oxides, TMDs, conducting polymers, and MXenes, is explored to enhance the specific capacitance, cycle stability, and energy density of supercapacitor electrode materials. This review also covers the tunable electronic properties of graphene, addressing charge transport, ion diffusion, and electrochemical performance, which are critical for efficient supercapacitor design. Graphene-based electrodes' flexibility and mechanical stability are examined, highlighting their role in wearable and portable electronic applications. Challenges such as large-scale production, electrode degradation, and cost-effectiveness are also discussed, offering potential solutions through innovative synthesis routes and composite material design. This review provides a holistic perspective on the current advancement of graphene-based electrode materials for supercapacitor applications.
{"title":"Beyond graphene basics: A holistic review of electronic structure, synthesis strategies, properties, and graphene-based electrode materials for supercapacitor applications","authors":"Sachin Kumar Yadav,&nbsp;Anil Kumar,&nbsp;Neeraj Mehta","doi":"10.1016/j.progsolidstchem.2025.100519","DOIUrl":"10.1016/j.progsolidstchem.2025.100519","url":null,"abstract":"<div><div>This review presents a comprehensive analysis of graphene-based electrode materials for supercapacitor application, focusing on electronic structure, synthesis strategies, and key attributes. The remarkable 2D-structure of graphene, characterized by sp<sup>2</sup> hybridized carbon atoms, confers exceptional electronic mobility (100000 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>), large specific surface area (2600 m<sup>2</sup>g<sup>-1</sup>), and mechanical flexibility (2.4 ± 0.4 TPa), making it an ideal contender for next-generation energy storage devices. We have discussed various synthesis strategies, including CVD, mechanical exfoliation, and chemical reduction, emphasizing their impact on the electrochemical performance of graphene electrodes. The integration of graphene with other nanomaterials, such as metal oxides, TMDs, conducting polymers, and MXenes, is explored to enhance the specific capacitance, cycle stability, and energy density of supercapacitor electrode materials. This review also covers the tunable electronic properties of graphene, addressing charge transport, ion diffusion, and electrochemical performance, which are critical for efficient supercapacitor design. Graphene-based electrodes' flexibility and mechanical stability are examined, highlighting their role in wearable and portable electronic applications. Challenges such as large-scale production, electrode degradation, and cost-effectiveness are also discussed, offering potential solutions through innovative synthesis routes and composite material design. This review provides a holistic perspective on the current advancement of graphene-based electrode materials for supercapacitor applications.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100519"},"PeriodicalIF":9.1,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting photoluminescence of Ba5P6O20:Dy3+ phosphor through facile alkali charge compensation
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2025-02-24 DOI: 10.1016/j.progsolidstchem.2025.100517
Yiting Huang , Xiaoyang Zhao , Zibo Huang , Jingkai Quan , Youwen Tang , Chenyang Jia , Jianguo Jia , Jintao Xie , Yanqiong Shen , Jing Zhu
Trivalent dysprosium (Dy3+)-activated inorganic phosphors have become fascinating due to tunable yellow/white light emission. Nevertheless, the challenge for solid-state lighting utilization is achieving highly luminous efficiency and thermostability of Dy3+. In this study, a new Ba5P6O20 (BPO) phosphor is developed via replacing Ba2+ with Dy3+. The luminescence behaviors in response to the occupancy sites and content of Dy3+ activators are thoroughly investigated. Subsequently, to enhance comprehensive luminescence performances, alkali metal ions are co-doped based on charge compensation strategy. Especially, the K+ compensation can induce that the luminous efficiency and intensity are increased by around 4 and 2 times, separately. Meanwhile, the high thermal quenching resistance and chromaticity shifting resistance for Dy3+ emissions are achieved. Finally, the optimized BPO:5%Dy3+,5%K+ sample is employed to obtain a satisfactory solid-state white lighting source.
{"title":"Boosting photoluminescence of Ba5P6O20:Dy3+ phosphor through facile alkali charge compensation","authors":"Yiting Huang ,&nbsp;Xiaoyang Zhao ,&nbsp;Zibo Huang ,&nbsp;Jingkai Quan ,&nbsp;Youwen Tang ,&nbsp;Chenyang Jia ,&nbsp;Jianguo Jia ,&nbsp;Jintao Xie ,&nbsp;Yanqiong Shen ,&nbsp;Jing Zhu","doi":"10.1016/j.progsolidstchem.2025.100517","DOIUrl":"10.1016/j.progsolidstchem.2025.100517","url":null,"abstract":"<div><div>Trivalent dysprosium (Dy<sup>3+</sup>)-activated inorganic phosphors have become fascinating due to tunable yellow/white light emission. Nevertheless, the challenge for solid-state lighting utilization is achieving highly luminous efficiency and thermostability of Dy<sup>3+</sup>. In this study, a new Ba<sub>5</sub>P<sub>6</sub>O<sub>20</sub> (BPO) phosphor is developed via replacing Ba<sup>2+</sup> with Dy<sup>3+</sup>. The luminescence behaviors in response to the occupancy sites and content of Dy<sup>3+</sup> activators are thoroughly investigated. Subsequently, to enhance comprehensive luminescence performances, alkali metal ions are co-doped based on charge compensation strategy. Especially, the K<sup>+</sup> compensation can induce that the luminous efficiency and intensity are increased by around 4 and 2 times, separately. Meanwhile, the high thermal quenching resistance and chromaticity shifting resistance for Dy<sup>3+</sup> emissions are achieved. Finally, the optimized BPO:5%Dy<sup>3+</sup>,5%K<sup>+</sup> sample is employed to obtain a satisfactory solid-state white lighting source.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"78 ","pages":"Article 100517"},"PeriodicalIF":9.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143549182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Yttrium iron garnets: Phase study and synthesis methods
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2025-01-06 DOI: 10.1016/j.progsolidstchem.2024.100507
N. Askarzadeh, H. Shokrollahi
Due to the rapid progress in the development of communication systems, magnetic ceramics-including spinels, hexaferrites, and garnets-have become increasingly attractive for use in various electronic and optoelectronic devices, particularly in the microwave range. Among the different types of ferrites, garnets generally exhibit higher electrical resistivity, lower dielectric losses, softer magnetic behavior, higher Curie points, and narrower ferromagnetic resonance linewidth. These properties make garnets suitable for spintronic technology, electro-optical applications, and the microwave/GHz domain, including devices such as phase shifters, circulators, and isolators. This important class of ferrimagnetic materials is found in two different compositional forms: unsubstituted garnets, or yttrium iron garnets (Y3Fe5O12, YIG), and substituted garnets (RxY3-xMyFe5-yO12). In addition to changes in chemical composition through doping and/or substitution of elements, other factors that can affect the performance of garnets include synthesis methods and heat treatment. Given the recent interest in nanotechnology, various shapes—including nanoparticles, thin films, nanorods, and nanotubes—have been considered alongside the bulk structure, either as composites or in uncombined forms, to develop materials for specific applications. This paper aims to provide an overview of the crystal structure, phase study, and various synthetic methods of garnets concerning their magnetic and structural behaviors.
{"title":"Yttrium iron garnets: Phase study and synthesis methods","authors":"N. Askarzadeh,&nbsp;H. Shokrollahi","doi":"10.1016/j.progsolidstchem.2024.100507","DOIUrl":"10.1016/j.progsolidstchem.2024.100507","url":null,"abstract":"<div><div>Due to the rapid progress in the development of communication systems, magnetic ceramics-including spinels, hexaferrites, and garnets-have become increasingly attractive for use in various electronic and optoelectronic devices, particularly in the microwave range. Among the different types of ferrites, garnets generally exhibit higher electrical resistivity, lower dielectric losses, softer magnetic behavior, higher Curie points, and narrower ferromagnetic resonance linewidth. These properties make garnets suitable for spintronic technology, electro-optical applications, and the microwave/GHz domain, including devices such as phase shifters, circulators, and isolators. This important class of ferrimagnetic materials is found in two different compositional forms: unsubstituted garnets, or yttrium iron garnets (Y<sub>3</sub>Fe<sub>5</sub>O<sub>12</sub>, YIG), and substituted garnets (R<sub>x</sub>Y<sub>3-x</sub>M<sub>y</sub>Fe<sub>5-y</sub>O<sub>12</sub>). In addition to changes in chemical composition through doping and/or substitution of elements, other factors that can affect the performance of garnets include synthesis methods and heat treatment. Given the recent interest in nanotechnology, various shapes—including nanoparticles, thin films, nanorods, and nanotubes—have been considered alongside the bulk structure, either as composites or in uncombined forms, to develop materials for specific applications. This paper aims to provide an overview of the crystal structure, phase study, and various synthetic methods of garnets concerning their magnetic and structural behaviors.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"77 ","pages":"Article 100507"},"PeriodicalIF":9.1,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress and outlook of ferroelectric/non-ferroelectric polar glass-ceramics for multi-catalytic applications
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-12 DOI: 10.1016/j.progsolidstchem.2024.100497
Chirag Porwal , Gurpreet Singh , Moolchand Sharma , Vishal Singh Chauhan , Rahul Vaish
Glass-ceramics have been long recognized for their capability to offer shared characteristics of both glassy as well as crystalline phases. By controlling volume fraction of crystalline phase dispersed in glassy matrix, the properties of glass-ceramics can be tuned for variety of applications such as dental implants, heat-resistant cooking ware, missiles nozzle cones, etc. A specific family of glass-ceramics that consists of ferroelectric/non-ferroelectric polar crystallites offers second-harmonic generation, pyroelectric, piezoelectric, and ferroelectric properties for actuators, sensors, non-linear optical devices, and lasers applications, that were traditionally not possible in glassy materials. Fabrication, crystallization behavior, and electrical properties of such glass-ceramics have been extensively studied in the last decade and widely reviewed in multiple documents in the literature. Recently, the presence of ferroelectric/non-ferroelectric polar crystallites in glasses unveils the new environmental applications of glass-ceramics using photocatalysis, piezocatalysis, and tribocatalysis processes stimulated by light, mechanical, and frictional energy, respectively. Ferroelectric/non-ferroelectric polar glass-ceramics for multi-catalysis is relatively a new and emerging area, that have potential to provide solution for real-environmental problems such as water-pollution. Thus, this review provides a comprehensive overview of multi-catalytic nature of ferroelectric/non-ferroelectric polar glass-ceramics. It discusses the underlying catalytic mechanisms and unveils the performance of these glass-ceramics in environmental applications. It highlights the advantages and challenges of ferroelectric/non-ferroelectric polar glass-ceramics as photo/piezo/tribocatalysts. This review will motivate glass researchers to work in the area of environmental applications of glass-ceramics using catalytic processes.
{"title":"Progress and outlook of ferroelectric/non-ferroelectric polar glass-ceramics for multi-catalytic applications","authors":"Chirag Porwal ,&nbsp;Gurpreet Singh ,&nbsp;Moolchand Sharma ,&nbsp;Vishal Singh Chauhan ,&nbsp;Rahul Vaish","doi":"10.1016/j.progsolidstchem.2024.100497","DOIUrl":"10.1016/j.progsolidstchem.2024.100497","url":null,"abstract":"<div><div>Glass-ceramics have been long recognized for their capability to offer shared characteristics of both glassy as well as crystalline phases. By controlling volume fraction of crystalline phase dispersed in glassy matrix, the properties of glass-ceramics can be tuned for variety of applications such as dental implants, heat-resistant cooking ware, missiles nozzle cones, etc. A specific family of glass-ceramics that consists of ferroelectric/non-ferroelectric polar crystallites offers second-harmonic generation, pyroelectric, piezoelectric, and ferroelectric properties for actuators, sensors, non-linear optical devices, and lasers applications, that were traditionally not possible in glassy materials. Fabrication, crystallization behavior, and electrical properties of such glass-ceramics have been extensively studied in the last decade and widely reviewed in multiple documents in the literature. Recently, the presence of ferroelectric/non-ferroelectric polar crystallites in glasses unveils the new environmental applications of glass-ceramics using photocatalysis, piezocatalysis, and tribocatalysis processes stimulated by light, mechanical, and frictional energy, respectively. Ferroelectric/non-ferroelectric polar glass-ceramics for multi-catalysis is relatively a new and emerging area, that have potential to provide solution for real-environmental problems such as water-pollution. Thus, this review provides a comprehensive overview of multi-catalytic nature of ferroelectric/non-ferroelectric polar glass-ceramics. It discusses the underlying catalytic mechanisms and unveils the performance of these glass-ceramics in environmental applications. It highlights the advantages and challenges of ferroelectric/non-ferroelectric polar glass-ceramics as photo/piezo/tribocatalysts. This review will motivate glass researchers to work in the area of environmental applications of glass-ceramics using catalytic processes.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"77 ","pages":"Article 100497"},"PeriodicalIF":9.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143131074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting the phosphorus uptake of La2(CO3)3·8H2O based adsorbents via sodium addition: Relationship between crystal structure and adsorption capacity 通过添加钠提高基于 La2(CO3)3-8H2O 的吸附剂对磷的吸收:晶体结构与吸附容量之间的关系
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-12 DOI: 10.1016/j.progsolidstchem.2024.100496
Zuo-Bei Wang , Xin Ye , Jie Yang , Yong-Hui Zhang , Zi-Ang Nan , Yi-Fan Wang , You-Gui Huang , Wei Wang
Excess phosphate contents in water bodies triggers eutrophication, which posts significant challenges to the aquatic ecosystem. Lanthanum-carbonate based adsorbents exhibit excellent phosphate binding properties for remediating eutrophication. However, they suffer from significant adsorption-capacity loss (>85 %) at high pH. Little has been done on understanding this behavior for improving the phosphorus adsorption of lanthanum-carbonate adsorbents in alkaline environments (e.g. eutrophic water bodies). Here, we discover that La2(CO3)3·8H2O, when produced by a conversion reaction from NaLa(CO3)2·xH2O, exhibits high phosphate adsorption capacity in a wide pH window. Under alkaline conditions (e.g. pH = 10), its adsorption capacity decreases by only 8 % compared to the value under neutral pH. By isolating three different lanthanum-carbonate based compounds and analyzing their molecular structures, we find that the trace amount of Na+ residual in our La2(CO3)3·8H2O alters the chemical environment surrounding the La3+ ions, which may significantly boost the phosphate uptake at high pH. Our results provide molecular insights for further tuning the material structure of phosphate adsorbents to achieve robust performances.
水体中磷酸盐含量过高会引发富营养化,给水生生态系统带来巨大挑战。以碳酸镧为基础的吸附剂具有出色的磷酸盐结合特性,可用于解决富营养化问题。然而,在 pH 值较高时,它们的吸附容量会明显下降(85%)。为了改善碳酸镧吸附剂在碱性环境(如富营养化水体)中对磷的吸附,人们对这种行为的了解还很少。在这里,我们发现,由 NaLa(CO3)2-xH2O 通过转化反应生成的 La2(CO3)3-8H2O 在较宽的 pH 值范围内具有较高的磷酸盐吸附能力。在碱性条件下(如 pH = 10),其吸附能力仅比中性 pH 值低 8%。通过分离三种不同的碳酸镧化合物并分析其分子结构,我们发现 La2(CO3)3-8H2O 中残留的微量 Na+ 改变了 La3+ 离子周围的化学环境,这可能会显著提高高 pH 值下的磷酸盐吸收能力。我们的研究结果为进一步调整磷酸盐吸附剂的材料结构以实现强大性能提供了分子见解。
{"title":"Boosting the phosphorus uptake of La2(CO3)3·8H2O based adsorbents via sodium addition: Relationship between crystal structure and adsorption capacity","authors":"Zuo-Bei Wang ,&nbsp;Xin Ye ,&nbsp;Jie Yang ,&nbsp;Yong-Hui Zhang ,&nbsp;Zi-Ang Nan ,&nbsp;Yi-Fan Wang ,&nbsp;You-Gui Huang ,&nbsp;Wei Wang","doi":"10.1016/j.progsolidstchem.2024.100496","DOIUrl":"10.1016/j.progsolidstchem.2024.100496","url":null,"abstract":"<div><div>Excess phosphate contents in water bodies triggers eutrophication, which posts significant challenges to the aquatic ecosystem. Lanthanum-carbonate based adsorbents exhibit excellent phosphate binding properties for remediating eutrophication. However, they suffer from significant adsorption-capacity loss (&gt;85 %) at high pH. Little has been done on understanding this behavior for improving the phosphorus adsorption of lanthanum-carbonate adsorbents in alkaline environments (<em>e.g.</em> eutrophic water bodies). Here, we discover that La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>·8H<sub>2</sub>O, when produced by a conversion reaction from NaLa(CO<sub>3</sub>)<sub>2</sub>·xH<sub>2</sub>O, exhibits high phosphate adsorption capacity in a wide pH window. Under alkaline conditions (<em>e.g.</em> pH = 10), its adsorption capacity decreases by only 8 % compared to the value under neutral pH. By isolating three different lanthanum-carbonate based compounds and analyzing their molecular structures, we find that the trace amount of Na<sup>+</sup> residual in our La<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub>·8H<sub>2</sub>O alters the chemical environment surrounding the La<sup>3+</sup> ions, which may significantly boost the phosphate uptake at high pH. Our results provide molecular insights for further tuning the material structure of phosphate adsorbents to achieve robust performances.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100496"},"PeriodicalIF":9.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Sr-substituted Ba1-xSrx(Zn1/3Nb2/3)O3 complex perovskites: Structural, electrical and electrochemical properties 研究锶取代的 Ba1-xSrx(Zn1/3Nb2/3)O3 复合包晶:结构、电学和电化学特性
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-09 DOI: 10.1016/j.progsolidstchem.2024.100495
Y. Feng , K.B. Tan , S.K. Chang , Y. Sulaiman , H.N. Lim , M. Lu , Y. Wang
Herein we report the structural, dielectric and electrochemical properties of Ba1-xSrx(Zn1/3Nb2/3)O3 (BSZN, 0 ≤ x ≤ 1) solid solution synthesised by solid-state reaction. A complete substitutional solid solution was obtained, wherein the BSZN cubic perovskites of the space group of Pm 3 m were obtained at x ≤ 0.6 while the pseudo-cubic phases were discernible at x > 0.6. The nano-sized crystallites, as determined by both Scherrer and Williamson-Hall analyses, supported the claim of large polyhedral grains of 0.1–0.3 μm by FE-SEM. Both ε′ and tan δ were found to vary consistently with increasing dopant concentration, except for an anomalous observation for the composition, x = 0.6 with the lowest tan δ of 0.0783 and the highest ε′ of 27.5. Such phenomenon could be attributed to the combined effects of larger grain size, higher relative density and stronger polarisation per molar volume. The impedance analysis revealed that these BSZN perovskites were of the negative temperature coefficient of resistance (NTCR) type. The combined plots of imaginary modulus (M″) and impedance (Z″) against frequency showed the short-range movement of localised charge carriers, suggesting a non-Debye-type relaxation process.
在此,我们报告了通过固态反应合成的 Ba1-xSrx(Zn1/3Nb2/3)O3(BSZN,0 ≤ x ≤ 1)固溶体的结构、介电和电化学特性。在 x ≤ 0.6 时,获得了空间群为 Pm 3‾m 的 BSZN 立方包晶,而在 x > 0.6 时,则可以看到假立方相。通过舍勒分析和威廉森-霍尔分析确定的纳米级结晶支持了通过 FE-SEM 确定的 0.1-0.3 μm 大多面体晶粒的说法。随着掺杂剂浓度的增加,ε′和tan δ都发生了一致的变化,除了成分 x = 0.6 的异常观察,其最低的 tan δ为 0.0783,最高的ε′为 27.5。这种现象可归因于较大的晶粒尺寸、较高的相对密度和单位摩尔体积较强极化的综合影响。阻抗分析表明,这些 BSZN 包晶属于负温度系数电阻(NTCR)类型。假想模量(M″)和阻抗(Z″)与频率的组合图显示了局部电荷载流子的短程运动,表明这是一种非德拜型弛豫过程。
{"title":"Investigation of Sr-substituted Ba1-xSrx(Zn1/3Nb2/3)O3 complex perovskites: Structural, electrical and electrochemical properties","authors":"Y. Feng ,&nbsp;K.B. Tan ,&nbsp;S.K. Chang ,&nbsp;Y. Sulaiman ,&nbsp;H.N. Lim ,&nbsp;M. Lu ,&nbsp;Y. Wang","doi":"10.1016/j.progsolidstchem.2024.100495","DOIUrl":"10.1016/j.progsolidstchem.2024.100495","url":null,"abstract":"<div><div>Herein we report the structural, dielectric and electrochemical properties of Ba<sub>1-x</sub>Sr<sub>x</sub>(Zn<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> (BSZN, 0 ≤ x ≤ 1) solid solution synthesised by solid-state reaction. A complete substitutional solid solution was obtained, wherein the BSZN cubic perovskites of the space group of <em>Pm</em> <span><math><mrow><mover><mn>3</mn><mo>‾</mo></mover></mrow></math></span> <em>m</em> were obtained at x ≤ 0.6 while the pseudo-cubic phases were discernible at x &gt; 0.6. The nano-sized crystallites, as determined by both Scherrer and Williamson-Hall analyses, supported the claim of large polyhedral grains of 0.1–0.3 μm by FE-SEM. Both <em>ε</em>′ and tan δ were found to vary consistently with increasing dopant concentration, except for an anomalous observation for the composition, x = 0.6 with the lowest tan δ of 0.0783 and the highest <em>ε</em>′ of 27.5. Such phenomenon could be attributed to the combined effects of larger grain size, higher relative density and stronger polarisation per molar volume. The impedance analysis revealed that these BSZN perovskites were of the negative temperature coefficient of resistance (NTCR) type. The combined plots of imaginary modulus (<em>M</em>″) and impedance (<em>Z</em>″) against frequency showed the short-range movement of localised charge carriers, suggesting a non-Debye-type relaxation process.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100495"},"PeriodicalIF":9.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New solid solutions with the R-type hexaferrite structure, BaFe4-xMxM’2O11 (M = In, Sc; M’ = Ti, Sn) 具有 R 型六铁氧体结构 BaFe4-xMxM'2O11 (M = In, Sc; M' = Ti, Sn) 的新固溶体
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-08 DOI: 10.1016/j.progsolidstchem.2024.100494
Yu-An Huang , Jun Li , Arthur P. Ramirez , M.A. Subramanian
Hexaferrites are a family of complex iron oxides with hexagonal structures. Novel compositions with the R-type hexaferrite structure, BaFe4-xMxM’2O11 (M = In, Sc; M’ = Ti, Sn; x = 0.0–1.8), are synthesized and characterized. Structural analyses using powder neutron diffraction reveal that trivalent iron cations are distributed among all the available M sites (octahedral and trigonal bipyramidal sites), with site preference varying with the composition. Ferrimagnetic behavior is observed for all the compounds, and the observed magnetic hysteresis loop indicates that the compounds are soft magnets. The color of the new solid solution can be tuned from dark reddish brown to reddish-orange and yellowish-orange as In or Sc substitutions increase. The origin of colors in these ferrite-based solid solutions results from the combination of ligand-to-metal charge transfer and electron-pair transitions across the face-shared octahedra, as seen in the hematite (Fe2O3). Reducing Fe content in the parent compound improves the diffuse reflectance in the near-infrared range, suggesting potential applications as cool pigments.
六铁氧体是一种具有六角形结构的复杂铁氧化物。本文合成并表征了具有 R 型六铁氧体结构的新型成分 BaFe4-xMxM'2O11(M = In、Sc;M' = Ti、Sn;x = 0.0-1.8)。利用粉末中子衍射进行的结构分析表明,三价铁阳离子分布在所有可用的 M 位点(八面体和三叉双锥位点)上,位点偏好随成分而变化。所有化合物都具有铁磁性,观察到的磁滞回线表明这些化合物是软磁体。随着 In 或 Sc 取代度的增加,新固溶体的颜色可从深红棕色调整为橘红色和橘黄色。这些铁基固溶体的颜色来源于配体到金属的电荷转移和面共八面体上的电子对跃迁,赤铁矿(Fe2O3)中就有这种现象。降低母体化合物中的铁含量可提高近红外范围的漫反射率,这表明它们有可能被用作冷颜料。
{"title":"New solid solutions with the R-type hexaferrite structure, BaFe4-xMxM’2O11 (M = In, Sc; M’ = Ti, Sn)","authors":"Yu-An Huang ,&nbsp;Jun Li ,&nbsp;Arthur P. Ramirez ,&nbsp;M.A. Subramanian","doi":"10.1016/j.progsolidstchem.2024.100494","DOIUrl":"10.1016/j.progsolidstchem.2024.100494","url":null,"abstract":"<div><div>Hexaferrites are a family of complex iron oxides with hexagonal structures. Novel compositions with the <em>R</em>-type hexaferrite structure, BaFe<sub>4-<em>x</em></sub><em>M</em><sub><em>x</em></sub><em>M’</em><sub>2</sub>O<sub>11</sub> (<em>M</em> = In, Sc; <em>M’</em> = Ti, Sn; <em>x</em> = 0.0–1.8), are synthesized and characterized. Structural analyses using powder neutron diffraction reveal that trivalent iron cations are distributed among all the available <em>M</em> sites (octahedral and trigonal bipyramidal sites), with site preference varying with the composition. Ferrimagnetic behavior is observed for all the compounds, and the observed magnetic hysteresis loop indicates that the compounds are soft magnets. The color of the new solid solution can be tuned from dark reddish brown to reddish-orange and yellowish-orange as In or Sc substitutions increase. The origin of colors in these ferrite-based solid solutions results from the combination of ligand-to-metal charge transfer and electron-pair transitions across the face-shared octahedra, as seen in the hematite (Fe<sub>2</sub>O<sub>3</sub>). Reducing Fe content in the parent compound improves the diffuse reflectance in the near-infrared range, suggesting potential applications as cool pigments.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100494"},"PeriodicalIF":9.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Mn5+-activated Ba2TiO4 phosphor emitting in the second near-infrared biological window 新型 Mn5+ 激活的 Ba2TiO4 荧光粉在第二近红外生物窗口发光
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-11-07 DOI: 10.1016/j.progsolidstchem.2024.100493
Hang Zhao , Xin Xin , Liangsheng Tian , Theeranun Siritanon , Suwit Suthirakun , Wongsathorn Kaewraung , Menghang Qi , Ruoxiu Xiao , Jingyi Ren , Peng Jiang
In recent years, second near-infrared window emitting phosphors have gained widespread research interest due to their excellent tissue penetration and high imaging accuracy. In this work, a new type of Ba2Ti1-xMnxO4+x/2 (0.02 ≤ x ≤ 0.10) phosphors were successfully prepared by high-temperature solid-phase method and their potential in luminescence thermometry is evaluated. PL and PLE spectral analysis prove that the optimal Mn doping concentration is x = 0.03. The as-synthesized phosphors exhibit a broad excitation band of 550–1000 nm and a narrow emission band of 1170–1220 nm. The electronic structures of the original Ba2TiO4 and Mn-doped Ba2TiO4 were calculated and analyzed using the DFT + U method, which facilitates a better understanding of the impact of Mn doping on the luminescent properties of Ba2TiO4. The luminescence decay lifetime is measured to be 101.44 μs at room temperature, which is a giant enhancement compared to conventional nanosecond lifetime phosphor, indicating a progress in imaging accuracy. In addition, the as-synthesized phosphors maintain over 75 % of the maximum luminescence intensity within the physiological temperature range. The potential applications in luminescence temperature measurement were also analyzed by the LIR ratio method, and the relative sensitivity could reach 2.31 %K−1 at 283 K, which is a relatively high value in the second near-infrared window. Therefore, the as-synthesized Ba2Ti1-xMnxO4+x/2 (0.02 ≤ x ≤ 0.10) phosphors demonstrate great potential in NIR applications such as biological imaging and luminescent thermometry.
近年来,第二种近红外窗口发射荧光粉因其出色的组织穿透性和高成像精度而获得了广泛的研究兴趣。本研究采用高温固相法成功制备了一种新型 Ba2Ti1-xMnxO4+x/2 (0.02 ≤ x ≤ 0.10)荧光粉,并评估了其在发光测温中的应用潜力。PL 和 PLE 光谱分析证明,最佳锰掺杂浓度为 x = 0.03。合成的荧光粉显示出 550-1000 纳米的宽激发带和 1170-1220 纳米的窄发射带。利用 DFT + U 方法计算并分析了原始 Ba2TiO4 和掺杂锰的 Ba2TiO4 的电子结构,从而更好地理解了掺杂锰对 Ba2TiO4 发光特性的影响。室温下测得的发光衰减寿命为 101.44 μs,与传统的纳秒寿命荧光粉相比有了大幅提高,这表明成像精度有了进步。此外,合成的荧光粉在生理温度范围内能保持 75% 以上的最大发光强度。我们还利用 LIR 比值法分析了发光温度测量的潜在应用,在 283 K 时,相对灵敏度可达 2.31 %K-1,这在第二近红外窗口中是一个相对较高的值。因此,合成的 Ba2Ti1-xMnxO4+x/2 (0.02 ≤ x ≤ 0.10)荧光粉在生物成像和发光测温等近红外应用领域具有很大的潜力。
{"title":"Novel Mn5+-activated Ba2TiO4 phosphor emitting in the second near-infrared biological window","authors":"Hang Zhao ,&nbsp;Xin Xin ,&nbsp;Liangsheng Tian ,&nbsp;Theeranun Siritanon ,&nbsp;Suwit Suthirakun ,&nbsp;Wongsathorn Kaewraung ,&nbsp;Menghang Qi ,&nbsp;Ruoxiu Xiao ,&nbsp;Jingyi Ren ,&nbsp;Peng Jiang","doi":"10.1016/j.progsolidstchem.2024.100493","DOIUrl":"10.1016/j.progsolidstchem.2024.100493","url":null,"abstract":"<div><div>In recent years, second near-infrared window emitting phosphors have gained widespread research interest due to their excellent tissue penetration and high imaging accuracy. In this work, a new type of Ba<sub>2</sub>Ti<sub>1-<em>x</em></sub>Mn<sub><em>x</em></sub>O<sub>4+<em>x</em>/2</sub> (0.02 ≤ <em>x</em> ≤ 0.10) phosphors were successfully prepared by high-temperature solid-phase method and their potential in luminescence thermometry is evaluated. PL and PLE spectral analysis prove that the optimal Mn doping concentration is <em>x</em> = 0.03. The as-synthesized phosphors exhibit a broad excitation band of 550–1000 nm and a narrow emission band of 1170–1220 nm. The electronic structures of the original Ba<sub>2</sub>TiO<sub>4</sub> and Mn-doped Ba<sub>2</sub>TiO<sub>4</sub> were calculated and analyzed using the DFT + U method, which facilitates a better understanding of the impact of Mn doping on the luminescent properties of Ba<sub>2</sub>TiO<sub>4</sub>. The luminescence decay lifetime is measured to be 101.44 μs at room temperature, which is a giant enhancement compared to conventional nanosecond lifetime phosphor, indicating a progress in imaging accuracy. In addition, the as-synthesized phosphors maintain over 75 % of the maximum luminescence intensity within the physiological temperature range. The potential applications in luminescence temperature measurement were also analyzed by the LIR ratio method, and the relative sensitivity could reach 2.31 %K<sup>−1</sup> at 283 K, which is a relatively high value in the second near-infrared window. Therefore, the as-synthesized Ba<sub>2</sub>Ti<sub>1-<em>x</em></sub>Mn<sub><em>x</em></sub>O<sub>4+<em>x</em>/2</sub> (0.02 ≤ <em>x</em> ≤ 0.10) phosphors demonstrate great potential in NIR applications such as biological imaging and luminescent thermometry.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100493"},"PeriodicalIF":9.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From layered 2D carbon to 3D tetrahedral allotropes C12 and C18 with physical properties related to diamond: Crystal chemistry and DFT investigations 从层状二维碳到具有与金刚石相关物理性质的三维四面体同素异形体 C12 和 C18:晶体化学和 DFT 研究
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-16 DOI: 10.1016/j.progsolidstchem.2024.100492
Samir F. Matar
Mechanisms of changes from 2D to 3D (D = dimensionality) involving 2D C(sp2) trigonal paving to C(sp3) tetrahedral stacking are proposed through puckering of the 2D layers on one hand and interlayer insertion of extra C on the other hand. Such transformations, led to 3D hexagonal C12 and C18 allotropes respectively characterized by lon and bac topologies. Using density functional theory DFT calculations, the two allotropes were found cohesive and stable both mechanically (elastic properties) and dynamically (phonons). Comparisons of the physical properties with known uni C6 were established letting identify ranges of large Vickers hardness: HV (uni C6) = 89 GPa, HV (lon C12) = 97 GPa, and HV (bac C18) = 70 GPa. Whilst C6 was identified with acoustic phonons instability, C12 and C18 were found stable dynamically throughout the acoustic and optic frequency ranges. Furthering on the thermal properties the allotropes were characterized with a temperature dependence curve of the specific heat CV close to experimental data of diamond with best fit for novel C18. The electronic band structures reveal a small band gap of 1 eV for uni C6 and larger direct band gap of 3 eV for the two other 3D allotropes. Such modulations of the electronic and physical properties should open scopes of carbon research.
提出了从二维到三维(D = 维度)的变化机制,其中涉及二维 C(sp2)三维铺层到 C(sp3)四面体堆叠,一方面是通过二维层的起皱,另一方面是通过层间插入额外的 C。这种转变导致了分别以 lon 和 bac 拓扑为特征的三维六边形 C12 和 C18 同素异形体。通过密度泛函理论 DFT 计算,发现这两种同素异形体在机械(弹性特性)和动力学(声子)方面都具有内聚性和稳定性。将其物理性质与已知的 uni C6 进行比较,确定了大维氏硬度的范围:HV(uni C6)= 89 GPa,HV(lon C12)= 97 GPa,HV(bac C18)= 70 GPa。C6 具有声子不稳定性,而 C12 和 C18 则在整个声学和光学频率范围内具有动态稳定性。此外,在热特性方面,同素异形体的比热 CV 随温度变化的曲线与金刚石的实验数据接近,新型 C18 的曲线拟合度最高。电子能带结构显示,单晶 C6 的能带间隙较小,为 1 eV,而其他两种三维同素异形体的直接能带间隙较大,为 3 eV。这种电子和物理性质的变化将为碳研究开辟新的领域。
{"title":"From layered 2D carbon to 3D tetrahedral allotropes C12 and C18 with physical properties related to diamond: Crystal chemistry and DFT investigations","authors":"Samir F. Matar","doi":"10.1016/j.progsolidstchem.2024.100492","DOIUrl":"10.1016/j.progsolidstchem.2024.100492","url":null,"abstract":"<div><div>Mechanisms of changes from 2D to 3D (D = dimensionality) involving 2D C(sp<sup>2</sup>) trigonal paving to C(sp<sup>3</sup>) tetrahedral stacking are proposed through puckering of the 2D layers on one hand and interlayer insertion of extra C on the other hand. Such transformations, led to 3D hexagonal C<sub>12</sub> and C<sub>18</sub> allotropes respectively characterized by <strong>lon</strong> and <strong>bac</strong> topologies. Using density functional theory DFT calculations, the two allotropes were found cohesive and stable both mechanically (elastic properties) and dynamically (phonons). Comparisons of the physical properties with known <strong>uni</strong> C<sub>6</sub> were established letting identify ranges of large Vickers hardness: H<sub>V</sub> (<strong>uni</strong> C<sub>6</sub>) = 89 GPa, H<sub>V</sub> (<strong>lon</strong> C<sub>12</sub>) = 97 GPa, and H<sub>V</sub> (<strong>bac</strong> C<sub>18</sub>) = 70 GPa. Whilst C<sub>6</sub> was identified with acoustic phonons instability, C<sub>12</sub> and C<sub>18</sub> were found stable dynamically throughout the acoustic and optic frequency ranges. Furthering on the thermal properties the allotropes were characterized with a temperature dependence curve of the specific heat C<sub>V</sub> close to experimental data of diamond with best fit for novel C<sub>18</sub>. The electronic band structures reveal a small band gap of 1 eV for <strong>uni</strong> C<sub>6</sub> and larger direct band gap of 3 eV for the two other 3D allotropes. Such modulations of the electronic and physical properties should open scopes of carbon research.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100492"},"PeriodicalIF":9.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the structure and polymerization mechanisms of CO molecules under pressure 深入了解 CO 分子在压力下的结构和聚合机制
IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-09 DOI: 10.1016/j.progsolidstchem.2024.100491
Xiuyuan Li , Zihuan Peng , Chongwen Jiang , Nan Li , Jun Zhang , Changqing Jin , Chuan Xiao
High pressure technique can greatly enrich the chemistry research by innovating the traditional research paradigm. Recently, tremendous attentions have been paid to the high-pressure behavior of low-Z molecules, such as CO, CO2, N2, O2 and mixtures. These molecules tend to polymerize into extended solids at the pressure of 1–100 GPa, but the structures and polymerization mechanisms are still poorly understood. Herein, as a research model, high pressure polymerization process of carbon monoxide (CO) is studied in detail both experimentally and theoretically. The in-situ Raman spectra and angle-resolved X-ray diffraction experiments prove the successful synthesis of p-CO and its amorphous structure. The theoretical simulations reveal that two CO molecules dimerize into the ethylenedione (OCCO) diradical with spin-polarized singlet state firstly, then the OCCO diradical induces the subsequent chain elongation, ring closure and chain crosslinking reactions, leading to formation of the amorphous 3D network. The multiple basic units, hybrid coordination of C/O atoms and complex connecting styles in p-CO are revealed. Based on the polymerization mechanisms, the fundamental principles governing the character (amorphous or crystalline) of extended solids under high pressure are elucidated. Due to the small dipole moment and the head-to-tail disorder of CO molecules, it is reasonable to speculate that crystalline p-CO may exist under more rigorous conditions than 110 GPa and 2000 K, at which the isoelectronic nitrogen (N2) molecules polymerize into a single-bonded cubic form of nitrogen. Our study provides a profound insight into the polymerization mechanism and structures of low-Z CO molecules under compression, contributes to the diversified chemical researches and has a generally scientific implications for the interior dynamics of planets.
高压技术创新了传统的研究范式,极大地丰富了化学研究。近年来,人们对 CO、CO2、N2、O2 和混合物等低 Z 值分子的高压行为给予了极大关注。这些分子往往会在 1-100 GPa 的压力下聚合成扩展固体,但人们对其结构和聚合机制仍知之甚少。本文以一氧化碳(CO)的高压聚合过程为研究模型,从实验和理论两方面进行了详细研究。原位拉曼光谱和角分辨 X 射线衍射实验证明了 p-CO 的成功合成及其无定形结构。理论模拟揭示了两个 CO 分子首先二聚为具有自旋极化单重态的乙烯二酮(OCCO)二元对偶体,然后 OCCO 二元对偶体诱导了后续的链伸长、闭环和链交联反应,从而形成了非晶态三维网络。揭示了 p-CO 中的多个基本单元、C/O 原子的混合配位和复杂的连接方式。根据聚合机理,阐明了高压下扩展固体特性(无定形或结晶)的基本原理。由于一氧化碳分子的偶极矩小且头尾无序,我们有理由推测结晶对一氧化碳可能存在于比 110 GPa 和 2000 K 更严格的条件下,在此条件下,等电子氮(N2)分子聚合成单键立方氮形式。我们的研究深刻揭示了低Z CO分子在压缩条件下的聚合机理和结构,有助于开展多元化的化学研究,并对行星内部动力学具有普遍的科学意义。
{"title":"Insights into the structure and polymerization mechanisms of CO molecules under pressure","authors":"Xiuyuan Li ,&nbsp;Zihuan Peng ,&nbsp;Chongwen Jiang ,&nbsp;Nan Li ,&nbsp;Jun Zhang ,&nbsp;Changqing Jin ,&nbsp;Chuan Xiao","doi":"10.1016/j.progsolidstchem.2024.100491","DOIUrl":"10.1016/j.progsolidstchem.2024.100491","url":null,"abstract":"<div><div>High pressure technique can greatly enrich the chemistry research by innovating the traditional research paradigm. Recently, tremendous attentions have been paid to the high-pressure behavior of low-Z molecules, such as CO, CO<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub> and mixtures. These molecules tend to polymerize into extended solids at the pressure of 1–100 GPa, but the structures and polymerization mechanisms are still poorly understood. Herein, as a research model, high pressure polymerization process of carbon monoxide (CO) is studied in detail both experimentally and theoretically. The in-situ Raman spectra and angle-resolved X-ray diffraction experiments prove the successful synthesis of p-CO and its amorphous structure. The theoretical simulations reveal that two CO molecules dimerize into the ethylenedione (OCCO) diradical with spin-polarized singlet state firstly, then the OCCO diradical induces the subsequent chain elongation, ring closure and chain crosslinking reactions, leading to formation of the amorphous 3D network. The multiple basic units, hybrid coordination of C/O atoms and complex connecting styles in p-CO are revealed. Based on the polymerization mechanisms, the fundamental principles governing the character (amorphous or crystalline) of extended solids under high pressure are elucidated. Due to the small dipole moment and the head-to-tail disorder of CO molecules, it is reasonable to speculate that crystalline p-CO may exist under more rigorous conditions than 110 GPa and 2000 K, at which the isoelectronic nitrogen (N<sub>2</sub>) molecules polymerize into a single-bonded cubic form of nitrogen. Our study provides a profound insight into the polymerization mechanism and structures of low-Z CO molecules under compression, contributes to the diversified chemical researches and has a generally scientific implications for the interior dynamics of planets.</div></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"76 ","pages":"Article 100491"},"PeriodicalIF":9.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Solid State Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1