Robert Laronga, Erik Borchardt, Barbara Hill, Edgar Velez, Denis Klemin, Sammy Haddad, Elia Haddad, Casey Chadwick, Elham Mahmoodaghdam, Farid Hamichi
{"title":"Integrated Formation Evaluation for Site-Specific Evaluation, Optimization, and Permitting of Carbon Storage Projects","authors":"Robert Laronga, Erik Borchardt, Barbara Hill, Edgar Velez, Denis Klemin, Sammy Haddad, Elia Haddad, Casey Chadwick, Elham Mahmoodaghdam, Farid Hamichi","doi":"10.30632/pjv64n5-2023a1","DOIUrl":null,"url":null,"abstract":"Participation in over 80 carbon capture and sequestration (CCS) projects spanning 25 years has led to the evolution of a recommended well-based appraisal workflow for CO2 sequestration in saline aquifers. Interpretation methods are expressly adapted for CCS applications to resolve key reservoir parameters, constrain field-scale modeling, provide answers required for the permitting process, and de-risk unique CCS evaluation challenges, such as Storage capacity Injectivity Containment. A challenge complicating all of the above is the eventual impact of three-way interaction among rock matrix, brine, and (impure) CO2 streams. Most logging, sampling, and laboratory techniques are adapted from established domains such as enhanced oil recovery, underground gas storage, and unconventional reservoir evaluation, though some CCS-specific innovation is also needed. Storage evaluation begins with established methods for lithology, porosity, permeability, and pressure, while special core analysis (SCAL) determines CO2 storage efficiency and relative permeability. Containment evaluation spans multiple disciplines and methods: the petrophysicist’s task to quantify seal capacity relies heavily on laboratory analysis, while geologists leverage downhole imaging tools to verify caprock structural/tectonic integrity. Geomechanics engineers define safe injection pressure via mechanical earth models (MEMs) built on advanced acoustic logs calibrated by core geomechanics, wellbore failure observations, and in-situ stress tests. The impact of rock-brine-CO2 interactions is studied via custom SCAL experiments and/or pore-scale digital rock simulations that rigorously represent chemical and thermal processes. Wireline formation tester samples provide representative formation brine as feedstock for SCAL. Water samples also enable operators to prove injection within regulatory limits while establishing baselines for future monitoring programs. Examples applied to recent CCS projects in North America are presented. All of the above data need to be integrated into a CCS model predicting the CO2 plume behavior across the area of interest and within multiple horizons.","PeriodicalId":49703,"journal":{"name":"Petrophysics","volume":"122 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/pjv64n5-2023a1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0
Abstract
Participation in over 80 carbon capture and sequestration (CCS) projects spanning 25 years has led to the evolution of a recommended well-based appraisal workflow for CO2 sequestration in saline aquifers. Interpretation methods are expressly adapted for CCS applications to resolve key reservoir parameters, constrain field-scale modeling, provide answers required for the permitting process, and de-risk unique CCS evaluation challenges, such as Storage capacity Injectivity Containment. A challenge complicating all of the above is the eventual impact of three-way interaction among rock matrix, brine, and (impure) CO2 streams. Most logging, sampling, and laboratory techniques are adapted from established domains such as enhanced oil recovery, underground gas storage, and unconventional reservoir evaluation, though some CCS-specific innovation is also needed. Storage evaluation begins with established methods for lithology, porosity, permeability, and pressure, while special core analysis (SCAL) determines CO2 storage efficiency and relative permeability. Containment evaluation spans multiple disciplines and methods: the petrophysicist’s task to quantify seal capacity relies heavily on laboratory analysis, while geologists leverage downhole imaging tools to verify caprock structural/tectonic integrity. Geomechanics engineers define safe injection pressure via mechanical earth models (MEMs) built on advanced acoustic logs calibrated by core geomechanics, wellbore failure observations, and in-situ stress tests. The impact of rock-brine-CO2 interactions is studied via custom SCAL experiments and/or pore-scale digital rock simulations that rigorously represent chemical and thermal processes. Wireline formation tester samples provide representative formation brine as feedstock for SCAL. Water samples also enable operators to prove injection within regulatory limits while establishing baselines for future monitoring programs. Examples applied to recent CCS projects in North America are presented. All of the above data need to be integrated into a CCS model predicting the CO2 plume behavior across the area of interest and within multiple horizons.
期刊介绍:
Petrophysics contains original contributions on theoretical and applied aspects of formation evaluation, including both open hole and cased hole well logging, core analysis and formation testing.