P-splines and GAMLSS: a powerful combination, with an application to zero-adjusted distributions

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistical Modelling Pub Date : 2023-10-01 DOI:10.1177/1471082x231176635
Dimitrios M. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Fernanda De Bastiani
{"title":"P-splines and GAMLSS: a powerful combination, with an application to zero-adjusted distributions","authors":"Dimitrios M. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Fernanda De Bastiani","doi":"10.1177/1471082x231176635","DOIUrl":null,"url":null,"abstract":"P-splines are a versatile statistical modelling tool, dealing with nonlinear relationships between the response and explanatory variable(s). GAMLSS is a distributional regression framework which allows modelling of a response variable using any parametric distribution. The combination of the two methodologies provides one of the most powerful tools in modern regression analysis. This article discusses the application of the two techniques when the response variable is zero-adjusted (or semi-continuous), which combines a point probability at zero with a positive continuous distribution.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"37 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1471082x231176635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

P-splines are a versatile statistical modelling tool, dealing with nonlinear relationships between the response and explanatory variable(s). GAMLSS is a distributional regression framework which allows modelling of a response variable using any parametric distribution. The combination of the two methodologies provides one of the most powerful tools in modern regression analysis. This article discusses the application of the two techniques when the response variable is zero-adjusted (or semi-continuous), which combines a point probability at zero with a positive continuous distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
p样条和GAMLSS:一个强大的组合,与零调整分布的应用
p样条是一种通用的统计建模工具,用于处理响应和解释变量之间的非线性关系。GAMLSS是一个分布回归框架,它允许使用任何参数分布对响应变量进行建模。这两种方法的结合提供了现代回归分析中最强大的工具之一。本文讨论了这两种技术在响应变量为零调整(或半连续)时的应用,它将零点概率与正连续分布相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
期刊最新文献
A statistical modelling approach to feedforward neural network model selection The Skellam distribution revisited: Estimating the unobserved incoming and outgoing ICU COVID-19 patients on a regional level in Germany A novel mixture model for characterizing human aiming performance data Fast, effective, and coherent time series modelling using the sparsity-ranked lasso Taking advantage of sampling designs in spatial small-area survey studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1