Yanxi Li, Derek S. Young, Julien Gori, Olivier Rioul
{"title":"A novel mixture model for characterizing human aiming performance data","authors":"Yanxi Li, Derek S. Young, Julien Gori, Olivier Rioul","doi":"10.1177/1471082x241234139","DOIUrl":null,"url":null,"abstract":"Fitts’ law is often employed as a predictive model for human movement, especially in the field of human-computer interaction. Models with an assumed Gaussian error structure are usually adequate when applied to data collected from controlled studies. However, observational data (often referred to as data gathered ‘in the wild’) typically display noticeable positive skewness relative to a mean trend as users do not routinely try to minimize their task completion time. As such, the exponentially modified Gaussian (EMG) regression model has been applied to aimed movements data. However, it is also of interest to reasonably characterize those regions where a user likely was not trying to minimize their task completion time. In this article, we propose a novel model with a two-component mixture structure—one Gaussian and one exponential—on the errors to identify such a region. An expectation-conditional-maximization (ECM) algorithm is developed for estimation of such a model and some properties of the algorithm are established. The efficacy of the proposed model, as well as its ability to inform model-based clustering, are addressed in this work through extensive simulations and an insightful analysis of a human aiming performance study.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x241234139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fitts’ law is often employed as a predictive model for human movement, especially in the field of human-computer interaction. Models with an assumed Gaussian error structure are usually adequate when applied to data collected from controlled studies. However, observational data (often referred to as data gathered ‘in the wild’) typically display noticeable positive skewness relative to a mean trend as users do not routinely try to minimize their task completion time. As such, the exponentially modified Gaussian (EMG) regression model has been applied to aimed movements data. However, it is also of interest to reasonably characterize those regions where a user likely was not trying to minimize their task completion time. In this article, we propose a novel model with a two-component mixture structure—one Gaussian and one exponential—on the errors to identify such a region. An expectation-conditional-maximization (ECM) algorithm is developed for estimation of such a model and some properties of the algorithm are established. The efficacy of the proposed model, as well as its ability to inform model-based clustering, are addressed in this work through extensive simulations and an insightful analysis of a human aiming performance study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.