Nonlinear optical feature generator for machine learning

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2023-10-01 DOI:10.1063/5.0158611
Mustafa Yildirim, Ilker Oguz, Fabian Kaufmann, Marc Reig Escalé, Rachel Grange, Demetri Psaltis, Christophe Moser
{"title":"Nonlinear optical feature generator for machine learning","authors":"Mustafa Yildirim, Ilker Oguz, Fabian Kaufmann, Marc Reig Escalé, Rachel Grange, Demetri Psaltis, Christophe Moser","doi":"10.1063/5.0158611","DOIUrl":null,"url":null,"abstract":"Modern machine learning models use an ever-increasing number of parameters to train (175 × 109 parameters for GPT-3) with large datasets to achieve better performance. Optical computing has been rediscovered as a potential solution for large-scale data processing, taking advantage of linear optical accelerators that perform operations at lower power consumption. However, to achieve efficient computing with light, it remains a challenge to create and control nonlinearity optically rather than electronically. In this study, a reservoir computing approach (RC) is investigated using a 14-mm waveguide in LiNbO3 on an insulator as an optical processor to validate the benefit of optical nonlinearity. Data are encoded on the spectrum of a femtosecond pulse, which is launched into the waveguide. The output of the waveguide is a nonlinear transform of the input, enabled by optical nonlinearities. We show experimentally that a simple digital linear classifier using the output spectrum of the waveguide increases the classification accuracy of several databases by ∼10% compared to untransformed data. In comparison, a digital neural network (NN) with tens of thousands of parameters was required to achieve similar accuracy. With the ability to reduce the number of parameters by a factor of at least 20, an integrated optical RC approach can attain a performance on a par with a digital NN.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"2014 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0158611","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modern machine learning models use an ever-increasing number of parameters to train (175 × 109 parameters for GPT-3) with large datasets to achieve better performance. Optical computing has been rediscovered as a potential solution for large-scale data processing, taking advantage of linear optical accelerators that perform operations at lower power consumption. However, to achieve efficient computing with light, it remains a challenge to create and control nonlinearity optically rather than electronically. In this study, a reservoir computing approach (RC) is investigated using a 14-mm waveguide in LiNbO3 on an insulator as an optical processor to validate the benefit of optical nonlinearity. Data are encoded on the spectrum of a femtosecond pulse, which is launched into the waveguide. The output of the waveguide is a nonlinear transform of the input, enabled by optical nonlinearities. We show experimentally that a simple digital linear classifier using the output spectrum of the waveguide increases the classification accuracy of several databases by ∼10% compared to untransformed data. In comparison, a digital neural network (NN) with tens of thousands of parameters was required to achieve similar accuracy. With the ability to reduce the number of parameters by a factor of at least 20, an integrated optical RC approach can attain a performance on a par with a digital NN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于机器学习的非线性光学特征发生器
现代机器学习模型使用越来越多的参数来使用大数据集进行训练(GPT-3的参数为175 × 109)以获得更好的性能。光学计算已经被重新发现为大规模数据处理的潜在解决方案,利用线性光学加速器以较低的功耗执行操作。然而,要实现有效的光计算,创建和控制非线性光学而不是电子仍然是一个挑战。在本研究中,研究了一种储层计算方法(RC),该方法使用绝缘体上的LiNbO3中的14mm波导作为光处理器,以验证光学非线性的好处。数据被编码在飞秒脉冲的频谱上,该脉冲被发射到波导中。波导的输出是输入的非线性变换,由光学非线性实现。我们通过实验证明,与未转换的数据相比,使用波导输出频谱的简单数字线性分类器可将多个数据库的分类精度提高约10%。相比之下,需要一个具有数万个参数的数字神经网络(NN)才能达到类似的精度。由于能够将参数数量减少至少20倍,因此集成光学RC方法可以获得与数字神经网络相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. Advancements in optical biosensing techniques: From fundamentals to future prospects The manipulation of spin angular momentum for binary circular Airy beam during propagation A tutorial on optical photothermal infrared (O-PTIR) microscopy Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1