首页 > 最新文献

APL Photonics最新文献

英文 中文
Broadband color routing with a single element nanoantenna for communication bands 利用单元素纳米天线为通信波段提供宽带彩色路由功能
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-02 DOI: 10.1063/5.0206274
Xianghua Liu, Ang Li, Chenyang Liu, Nengyang Zhao, Jiahao Peng, Fengyuan Gan, Xinrui Lei, Ruxue Wang, Aimin Wu
Spectral routing techniques have attracted plenty of research attention for the past decades, as they enable light manipulation in both the frequency domain and the spatial domain, which is crucial for applications in on-chip spectroscopy, optical switching, and modern communications. Here, we demonstrate an ultra-compact asymmetric nanoplasmonic router for communication bands that routes O and C bands to opposite positions. The nanorouter consists of two uneven grooves that create bidirectional scattered optical fields, utilizing the interference between different optical modes inside the grooves. A broadband spectrum exceeding 100 nm and a maximum extinction ratio of 31 dB are achieved, providing new opportunities for nanophotonic color routing solutions and extensions to other areas such as imaging sensors and spectral measurements.
过去几十年来,光谱路由技术吸引了大量研究人员的关注,因为它们可以在频域和空间域对光进行操纵,这对于片上光谱学、光开关和现代通信中的应用至关重要。在这里,我们展示了一种用于通信波段的超紧凑非对称纳米光电路由器,它能将 O 波段和 C 波段路由到相反的位置。该纳米路由器由两个凹凸不平的凹槽组成,利用凹槽内不同光学模式之间的干涉,产生双向散射光场。实现了超过 100 nm 的宽带光谱和 31 dB 的最大消光比,为纳米光子色彩路由解决方案提供了新的机遇,并扩展到成像传感器和光谱测量等其他领域。
{"title":"Broadband color routing with a single element nanoantenna for communication bands","authors":"Xianghua Liu, Ang Li, Chenyang Liu, Nengyang Zhao, Jiahao Peng, Fengyuan Gan, Xinrui Lei, Ruxue Wang, Aimin Wu","doi":"10.1063/5.0206274","DOIUrl":"https://doi.org/10.1063/5.0206274","url":null,"abstract":"Spectral routing techniques have attracted plenty of research attention for the past decades, as they enable light manipulation in both the frequency domain and the spatial domain, which is crucial for applications in on-chip spectroscopy, optical switching, and modern communications. Here, we demonstrate an ultra-compact asymmetric nanoplasmonic router for communication bands that routes O and C bands to opposite positions. The nanorouter consists of two uneven grooves that create bidirectional scattered optical fields, utilizing the interference between different optical modes inside the grooves. A broadband spectrum exceeding 100 nm and a maximum extinction ratio of 31 dB are achieved, providing new opportunities for nanophotonic color routing solutions and extensions to other areas such as imaging sensors and spectral measurements.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Q magnetic toroidal dipole resonance in all-dielectric metasurfaces 全介质元表面中的高 Q 磁环偶极共振
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-02 DOI: 10.1063/5.0208936
Ying Zhang, Lulu Wang, Haoxuan He, Hong Duan, Jing Huang, Chenggui Gao, Shaojun You, Lujun Huang, Andrey E. Miroshnichenko, Chaobiao Zhou
High quality (Q) factor toroidal dipole (TD) resonances have played an increasingly important role in enhancing light–matter interactions. Interestingly, TDs share a similar far-field distribution as the conventional electric/magnetic dipoles but have distinct near-field profiles from them. While most reported works focused on the electric TD, magnetic TDs (MTDs), particularly high-Q MTD, have not been fully explored yet. Here, we successfully realized a high-Q MTD by effectively harnessing the ultrahigh Q-factor guided mode resonances supported in an all-dielectric metasurface, that is, changing the interspacing between silicon nanobar dimers. Other salient properties include the stable resonance wavelength but a precisely tailored Q-factor by interspacing distance. A multipole decomposition analysis indicates that this mode is dominated by the MTD, where the electric fields are mainly confined within the dielectric nanostructures, while the induced magnetic dipole loops are connected head-to-tail. Finally, we experimentally demonstrated such high-Q MTD resonance by fabricating a series of silicon metasurfaces and measuring their transmission spectra. The MTD resonance is characterized by a sharp Fano resonance in the transmission spectrum. The maximum measured Q-factor is up to 5079. Our results provide useful guidance for realizing high-Q MTD and may find exciting applications in boosting light–matter interactions.
高质量(Q)因子环状偶极子(TD)共振在增强光物质相互作用方面发挥着越来越重要的作用。有趣的是,TD 与传统的电偶极/磁偶极有着相似的远场分布,但却有着不同的近场分布。虽然大多数报道都集中在电TD上,但磁TD(MTD),尤其是高Q MTD,尚未得到充分探索。在这里,我们通过有效利用全介质元表面支持的超高 Q 因子导模共振,即改变硅纳米棒二聚体之间的间隔,成功实现了高 Q 值 MTD。其他突出特性包括共振波长稳定,但Q因子可通过间隔距离精确定制。多极分解分析表明,该模式由 MTD 主导,其中电场主要局限在介电纳米结构内,而诱导磁偶极环则头尾相连。最后,我们通过制作一系列硅元表面并测量其透射光谱,在实验中证明了这种高 Q 值 MTD 共振。MTD 共振的特点是透射光谱中存在尖锐的法诺共振。测得的最大 Q 因子高达 5079。我们的研究结果为实现高 Q 值 MTD 提供了有用的指导,并可能在促进光物质相互作用方面找到令人兴奋的应用。
{"title":"High-Q magnetic toroidal dipole resonance in all-dielectric metasurfaces","authors":"Ying Zhang, Lulu Wang, Haoxuan He, Hong Duan, Jing Huang, Chenggui Gao, Shaojun You, Lujun Huang, Andrey E. Miroshnichenko, Chaobiao Zhou","doi":"10.1063/5.0208936","DOIUrl":"https://doi.org/10.1063/5.0208936","url":null,"abstract":"High quality (Q) factor toroidal dipole (TD) resonances have played an increasingly important role in enhancing light–matter interactions. Interestingly, TDs share a similar far-field distribution as the conventional electric/magnetic dipoles but have distinct near-field profiles from them. While most reported works focused on the electric TD, magnetic TDs (MTDs), particularly high-Q MTD, have not been fully explored yet. Here, we successfully realized a high-Q MTD by effectively harnessing the ultrahigh Q-factor guided mode resonances supported in an all-dielectric metasurface, that is, changing the interspacing between silicon nanobar dimers. Other salient properties include the stable resonance wavelength but a precisely tailored Q-factor by interspacing distance. A multipole decomposition analysis indicates that this mode is dominated by the MTD, where the electric fields are mainly confined within the dielectric nanostructures, while the induced magnetic dipole loops are connected head-to-tail. Finally, we experimentally demonstrated such high-Q MTD resonance by fabricating a series of silicon metasurfaces and measuring their transmission spectra. The MTD resonance is characterized by a sharp Fano resonance in the transmission spectrum. The maximum measured Q-factor is up to 5079. Our results provide useful guidance for realizing high-Q MTD and may find exciting applications in boosting light–matter interactions.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2 W monolithic fiber laser at 3.8 µm 2 W 单片光纤激光器,波长 3.8 µm
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-01 DOI: 10.1063/5.0212455
M. Lemieux-Tanguay, T. Boilard, P. Paradis, R. Vallée, M. Bernier
We report a dual-wavelength-pumped all-fiber continuous-wave laser operating at the extended wavelength of 3.79 µm that reaches a record output power of 2.0 W. This represents, to the best of our knowledge, the highest output power reported at the longest spectral range for a fiber laser. The laser cavity, made of a heavily erbium-doped fluoride fiber and bounded by two photo-inscribed fiber Bragg gratings, reaches a slope efficiency of 46.5% with respect to the absorbed 1976 nm pump power. The system exhibits an absorption dependency of the 1976 nm pump on the launched 976 nm pump and a quenching behavior dependency on the output coupler reflectivity. The all-fiber design of the cavity allows significant power scaling of the laser and ensures its long-term stability.
据我们所知,这是目前所报道的光纤激光器在最长光谱范围内的最高输出功率。激光腔由重度掺铒氟化物光纤制成,以两个光刻光纤布拉格光栅为边界,相对于吸收的1976 nm泵浦功率,斜率效率达到46.5%。该系统显示出 1976 纳米泵浦对发射的 976 纳米泵浦的吸收依赖性,以及对输出耦合器反射率的淬火行为依赖性。腔体的全光纤设计使激光器的功率扩展显著,并确保了其长期稳定性。
{"title":"2 W monolithic fiber laser at 3.8 µm","authors":"M. Lemieux-Tanguay, T. Boilard, P. Paradis, R. Vallée, M. Bernier","doi":"10.1063/5.0212455","DOIUrl":"https://doi.org/10.1063/5.0212455","url":null,"abstract":"We report a dual-wavelength-pumped all-fiber continuous-wave laser operating at the extended wavelength of 3.79 µm that reaches a record output power of 2.0 W. This represents, to the best of our knowledge, the highest output power reported at the longest spectral range for a fiber laser. The laser cavity, made of a heavily erbium-doped fluoride fiber and bounded by two photo-inscribed fiber Bragg gratings, reaches a slope efficiency of 46.5% with respect to the absorbed 1976 nm pump power. The system exhibits an absorption dependency of the 1976 nm pump on the launched 976 nm pump and a quenching behavior dependency on the output coupler reflectivity. The all-fiber design of the cavity allows significant power scaling of the laser and ensures its long-term stability.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optically controllable deformation and phase change in VO2/Si3N4/Au hybrid nanostructures with polarization selectivity 具有偏振选择性的 VO2/Si3N4/Au 混合纳米结构中的光可控形变和相变
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-01 DOI: 10.1063/5.0213410
Xiaochen Zhang, Yuan Li, Weikang Dong, Qinghua Liang, Haozhe Sun, Yang Wang, Xiaowei Li, Lan Jiang, Xinping Zhang, He Ma, Jiafang Li
Optically spatial displacement and material modification hold great potential for the appealing applications in nanofabrication and reconfiguration of functional optical devices. Here, we propose and demonstrate a scheme to achieve simultaneous deformation and phase change in vanadium dioxide (VO2)/Si3N4/Au hybrid nanostructures by laser stimuli. Low triggering threshold and significant deformation characteristics of VO2, based on controllable phase transition, are demonstrated in microscale cantilevers. The plasmonic properties of the nanostructure array are further utilized to achieve a polarization-selective dynamic response. The persistence of deformation and dynamical optical modulation are further demonstrated. Such high-precision fabrication methods and non-contact reconfiguration methods are useful for future applications in dynamic optical manipulation.
光学空间位移和材料改性在纳米制造和功能光学器件的重新配置方面具有巨大的应用潜力。在此,我们提出并演示了一种通过激光刺激实现二氧化钒(VO2)/Si3N4/金混合纳米结构同时变形和相变的方案。在微尺度悬臂中展示了基于可控相变的低触发阈值和二氧化钒的显著变形特性。纳米结构阵列的等离子特性被进一步用于实现极化选择性动态响应。变形的持久性和动态光学调制得到了进一步证实。这种高精度制造方法和非接触式重新配置方法对未来动态光学操纵的应用非常有用。
{"title":"Optically controllable deformation and phase change in VO2/Si3N4/Au hybrid nanostructures with polarization selectivity","authors":"Xiaochen Zhang, Yuan Li, Weikang Dong, Qinghua Liang, Haozhe Sun, Yang Wang, Xiaowei Li, Lan Jiang, Xinping Zhang, He Ma, Jiafang Li","doi":"10.1063/5.0213410","DOIUrl":"https://doi.org/10.1063/5.0213410","url":null,"abstract":"Optically spatial displacement and material modification hold great potential for the appealing applications in nanofabrication and reconfiguration of functional optical devices. Here, we propose and demonstrate a scheme to achieve simultaneous deformation and phase change in vanadium dioxide (VO2)/Si3N4/Au hybrid nanostructures by laser stimuli. Low triggering threshold and significant deformation characteristics of VO2, based on controllable phase transition, are demonstrated in microscale cantilevers. The plasmonic properties of the nanostructure array are further utilized to achieve a polarization-selective dynamic response. The persistence of deformation and dynamical optical modulation are further demonstrated. Such high-precision fabrication methods and non-contact reconfiguration methods are useful for future applications in dynamic optical manipulation.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar-blind photonic integrated chips for real-time on-chip communication 用于实时片上通信的太阳盲光子集成芯片
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-01 DOI: 10.1063/5.0206657
Rui He, Yijian Song, Naixin Liu, Renfeng Chen, Jin Wu, Yufeng Wang, Qiang Hu, Xiongbin Chen, Junxi Wang, Jinmin Li, Tongbo Wei
The monolithically integrated self-driven photoelectric detector (PD) with the light-emitting diode (LED) epitaxial structure completely relies on the built-in electric field in the multi-quantum wells region to separate the photogenerated carriers. Here, we propose a novel superlattices–electron barrier layer structure to expand the potential field region and enhance the detection capability of the integrated PD. The PD exhibits a record-breaking photo-to-dark current ratio of 5.14 × 107, responsivity of 110.3 A/W, and specific detectivity of 2.2 × 1013 Jones at 0 V bias, respectively. A clear open-eyed diagram of the monolithically integrated chip, including the PD, LED, and waveguide, is realized under a high-speed communication rate of 150 Mbps. The obtained transient response (rise/decay) time of 2.16/2.28 ns also illustrates the outstanding transient response capability of the integrated chip. The on-chip optical communication system is built to achieve the practical video signals transmission application, which is a formidable contender for the core module of future large-scale photonic integrated circuits.
采用发光二极管(LED)外延结构的单片集成自驱动光电探测器(PD)完全依靠多量子阱区的内置电场来分离光生载流子。在此,我们提出了一种新型超晶格-电子势垒层结构,以扩大势场区域,增强集成 PD 的探测能力。在 0 V 偏压条件下,该光导二极管的光暗电流比为 5.14 × 107,响应率为 110.3 A/W ,比检测率为 2.2 × 1013 Jones,分别创下了历史新高。在 150 Mbps 的高速通信速率下,实现了单片集成芯片(包括 PD、LED 和波导)的清晰睁眼图。获得的瞬态响应(上升/衰减)时间为 2.16/2.28 ns,这也说明了集成芯片出色的瞬态响应能力。片上光通信系统的构建实现了视频信号传输的实际应用,是未来大规模光子集成电路核心模块的有力竞争者。
{"title":"Solar-blind photonic integrated chips for real-time on-chip communication","authors":"Rui He, Yijian Song, Naixin Liu, Renfeng Chen, Jin Wu, Yufeng Wang, Qiang Hu, Xiongbin Chen, Junxi Wang, Jinmin Li, Tongbo Wei","doi":"10.1063/5.0206657","DOIUrl":"https://doi.org/10.1063/5.0206657","url":null,"abstract":"The monolithically integrated self-driven photoelectric detector (PD) with the light-emitting diode (LED) epitaxial structure completely relies on the built-in electric field in the multi-quantum wells region to separate the photogenerated carriers. Here, we propose a novel superlattices–electron barrier layer structure to expand the potential field region and enhance the detection capability of the integrated PD. The PD exhibits a record-breaking photo-to-dark current ratio of 5.14 × 107, responsivity of 110.3 A/W, and specific detectivity of 2.2 × 1013 Jones at 0 V bias, respectively. A clear open-eyed diagram of the monolithically integrated chip, including the PD, LED, and waveguide, is realized under a high-speed communication rate of 150 Mbps. The obtained transient response (rise/decay) time of 2.16/2.28 ns also illustrates the outstanding transient response capability of the integrated chip. The on-chip optical communication system is built to achieve the practical video signals transmission application, which is a formidable contender for the core module of future large-scale photonic integrated circuits.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking the barriers of electron-driven x-ray radiation in crystals 打破晶体中电子驱动 X 射线辐射的障碍
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-01 DOI: 10.1063/5.0206819
Amnon Balanov, Alexey Gorlach, Ido Kaminer
Parametric x-ray radiation (PXR) is a prospective mechanism for producing directional, tunable, and quasi-coherent x-rays in laboratory-scale dimensions, yet it is limited by heat dissipation and self-absorption. Resolving these limits, we show the PXR source flux is suitable for medical imaging and x-ray spectroscopy. We discuss the experimental feasibility of these findings for a compact commercial PXR source.
参量 X 射线辐射(PXR)是在实验室规模内产生定向、可调谐和准相干 X 射线的一种前瞻性机制,但它受到散热和自吸收的限制。解决了这些限制后,我们发现 PXR 源流量适用于医学成像和 X 射线光谱学。我们讨论了这些发现对于紧凑型商用 PXR 源的实验可行性。
{"title":"Breaking the barriers of electron-driven x-ray radiation in crystals","authors":"Amnon Balanov, Alexey Gorlach, Ido Kaminer","doi":"10.1063/5.0206819","DOIUrl":"https://doi.org/10.1063/5.0206819","url":null,"abstract":"Parametric x-ray radiation (PXR) is a prospective mechanism for producing directional, tunable, and quasi-coherent x-rays in laboratory-scale dimensions, yet it is limited by heat dissipation and self-absorption. Resolving these limits, we show the PXR source flux is suitable for medical imaging and x-ray spectroscopy. We discuss the experimental feasibility of these findings for a compact commercial PXR source.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-written waveguide-integrated coherent spins in diamond 金刚石中的激光写入波导集成相干自旋
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-07-01 DOI: 10.1063/5.0209294
Yanzhao Guo, John P. Hadden, Federico Gorrini, Giulio Coccia, Vibhav Bharadwaj, Vinaya Kumar Kavatamane, Mohammad Sahnawaz Alam, Roberta Ramponi, Paul E. Barclay, Andrea Chiappini, Maurizio Ferrari, Alexander Kubanek, Angelo Bifone, Shane M. Eaton, Anthony J. Bennett
Quantum emitters, such as the negatively charged nitrogen-vacancy center in diamond, are attractive for quantum technologies, such as nano-sensing, quantum information processing, and as a non-classical light source. However, it is still challenging to position individual emitters in photonic structures while preserving the spin coherence properties of the defect. In this paper, we investigate single and ensemble waveguide-integrated nitrogen-vacancy centers in diamond fabricated by femtosecond laser writing followed by thermal annealing. Their spin coherence properties are systematically investigated and are shown to be comparable to native nitrogen-vacancy centers in diamond. This method paves the way for the fabrication of coherent spins integrated within photonic devices.
量子发射器,如金刚石中带负电荷的氮空穴中心,对纳米传感、量子信息处理等量子技术以及作为非经典光源具有吸引力。然而,如何在光子结构中定位单个发射器,同时保持缺陷的自旋相干特性,仍然是一项挑战。在本文中,我们研究了通过飞秒激光写入和热退火在金刚石中制造的单个和集合波导集成氮空位中心。我们系统地研究了它们的自旋相干特性,结果表明它们与金刚石中的原生氮空位中心相当。这种方法为制造集成在光子设备中的相干自旋铺平了道路。
{"title":"Laser-written waveguide-integrated coherent spins in diamond","authors":"Yanzhao Guo, John P. Hadden, Federico Gorrini, Giulio Coccia, Vibhav Bharadwaj, Vinaya Kumar Kavatamane, Mohammad Sahnawaz Alam, Roberta Ramponi, Paul E. Barclay, Andrea Chiappini, Maurizio Ferrari, Alexander Kubanek, Angelo Bifone, Shane M. Eaton, Anthony J. Bennett","doi":"10.1063/5.0209294","DOIUrl":"https://doi.org/10.1063/5.0209294","url":null,"abstract":"Quantum emitters, such as the negatively charged nitrogen-vacancy center in diamond, are attractive for quantum technologies, such as nano-sensing, quantum information processing, and as a non-classical light source. However, it is still challenging to position individual emitters in photonic structures while preserving the spin coherence properties of the defect. In this paper, we investigate single and ensemble waveguide-integrated nitrogen-vacancy centers in diamond fabricated by femtosecond laser writing followed by thermal annealing. Their spin coherence properties are systematically investigated and are shown to be comparable to native nitrogen-vacancy centers in diamond. This method paves the way for the fabrication of coherent spins integrated within photonic devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retrieving genuine nonlinear Raman responses in ultrafast spectroscopy via deep learning 通过深度学习检索超快光谱学中真正的非线性拉曼响应
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-28 DOI: 10.1063/5.0198013
Giuseppe Fumero, Giovanni Batignani, Edoardo Cassetta, Carino Ferrante, Stefano Giagu, Tullio Scopigno
Noise manifests ubiquitously in nonlinear spectroscopy, where multiple sources contribute to experimental signals generating interrelated unwanted components, from random point-wise fluctuations to structured baseline signals. Mitigating strategies are usually heuristic, depending on subjective biases such as the setting of parameters in data analysis algorithms and the removal order of the unwanted components. We propose a data-driven frequency-domain denoiser based on a convolutional neural network to extract authentic vibrational features from a nonlinear background in noisy spectroscopic raw data. The different spectral scales in the problem are treated in parallel by means of filters with multiple kernel sizes, which allow the receptive field of the network to adapt to the informative features in the spectra. We test our approach by retrieving asymmetric peaks in stimulated Raman spectroscopy, an ideal test-bed due to its intrinsic complex spectral features combined with a strong background signal. By using a theoretical perturbative toolbox, we efficiently train the network with simulated datasets resembling the statistical properties and lineshapes of the experimental spectra. The developed algorithm is successfully applied to experimental data to obtain noise- and background-free stimulated Raman spectra of organic molecules and prototypical heme proteins.
噪声在非线性光谱学中表现得无处不在,多种来源的实验信号会产生相互关联的不需要的成分,从随机的点状波动到结构化的基线信号。缓解策略通常是启发式的,取决于主观偏差,如数据分析算法中参数的设置和去除不需要成分的顺序。我们提出了一种基于卷积神经网络的数据驱动型频域去噪器,用于从噪声光谱原始数据的非线性背景中提取真实的振动特征。问题中的不同光谱尺度通过具有多种核大小的滤波器并行处理,从而使网络的感受野适应光谱中的信息特征。我们通过检索受激拉曼光谱中的非对称峰来测试我们的方法,由于其固有的复杂光谱特征与强大的背景信号相结合,因此是一个理想的测试平台。通过使用理论扰动工具箱,我们利用与实验光谱的统计特性和线型相似的模拟数据集有效地训练了网络。我们成功地将所开发的算法应用于实验数据,获得了有机分子和原型血红素蛋白的无噪声、无背景受激拉曼光谱。
{"title":"Retrieving genuine nonlinear Raman responses in ultrafast spectroscopy via deep learning","authors":"Giuseppe Fumero, Giovanni Batignani, Edoardo Cassetta, Carino Ferrante, Stefano Giagu, Tullio Scopigno","doi":"10.1063/5.0198013","DOIUrl":"https://doi.org/10.1063/5.0198013","url":null,"abstract":"Noise manifests ubiquitously in nonlinear spectroscopy, where multiple sources contribute to experimental signals generating interrelated unwanted components, from random point-wise fluctuations to structured baseline signals. Mitigating strategies are usually heuristic, depending on subjective biases such as the setting of parameters in data analysis algorithms and the removal order of the unwanted components. We propose a data-driven frequency-domain denoiser based on a convolutional neural network to extract authentic vibrational features from a nonlinear background in noisy spectroscopic raw data. The different spectral scales in the problem are treated in parallel by means of filters with multiple kernel sizes, which allow the receptive field of the network to adapt to the informative features in the spectra. We test our approach by retrieving asymmetric peaks in stimulated Raman spectroscopy, an ideal test-bed due to its intrinsic complex spectral features combined with a strong background signal. By using a theoretical perturbative toolbox, we efficiently train the network with simulated datasets resembling the statistical properties and lineshapes of the experimental spectra. The developed algorithm is successfully applied to experimental data to obtain noise- and background-free stimulated Raman spectra of organic molecules and prototypical heme proteins.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best practices in measuring absorption at the macro- and microscale 宏观和微观测量吸收的最佳做法
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-26 DOI: 10.1063/5.0210830
A. R. Bowman, J. Ma, F. Kiani, G. García Martínez, G. Tagliabue
The fraction of light absorbed in a material is a key parameter for a wide range of optoelectronic and energy devices, including solar cells, light emitting diodes, and photo(electro)chemical devices. It can reveal detailed performance information and establish a material’s theoretical efficiency limits. However, measuring absorption accurately is challenging, especially due to scattering effects at the macroscale and achieving perpendicular illumination over a small area at the microscale. In this tutorial, we present concepts and best practices in measuring absorption at both the macro- and micro-scale. We also give examples of using absorption to reveal critical optoelectronic information in energy devices. This work aims at standardizing the recording of absorption measurements across a number of fields, allowing for improved microscale understanding of a wide range of samples.
对于包括太阳能电池、发光二极管和光(电)化学器件在内的各种光电和能源器件来说,材料的光吸收率是一个关键参数。它可以揭示详细的性能信息,并确定材料的理论效率极限。然而,精确测量吸收是一项挑战,特别是由于宏观尺度的散射效应和微观尺度的小面积垂直照射。在本教程中,我们将介绍在宏观和微观尺度上测量吸收的概念和最佳实践。我们还举例说明了如何利用吸收来揭示能源设备中的关键光电信息。这项工作旨在使多个领域的吸收测量记录标准化,从而提高对各种样品的微观了解。
{"title":"Best practices in measuring absorption at the macro- and microscale","authors":"A. R. Bowman, J. Ma, F. Kiani, G. García Martínez, G. Tagliabue","doi":"10.1063/5.0210830","DOIUrl":"https://doi.org/10.1063/5.0210830","url":null,"abstract":"The fraction of light absorbed in a material is a key parameter for a wide range of optoelectronic and energy devices, including solar cells, light emitting diodes, and photo(electro)chemical devices. It can reveal detailed performance information and establish a material’s theoretical efficiency limits. However, measuring absorption accurately is challenging, especially due to scattering effects at the macroscale and achieving perpendicular illumination over a small area at the microscale. In this tutorial, we present concepts and best practices in measuring absorption at both the macro- and micro-scale. We also give examples of using absorption to reveal critical optoelectronic information in energy devices. This work aims at standardizing the recording of absorption measurements across a number of fields, allowing for improved microscale understanding of a wide range of samples.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of efficient defect-based quantum emitters 基于缺陷的高效量子发射器的合理设计
IF 5.6 1区 物理与天体物理 Q1 OPTICS Pub Date : 2024-06-26 DOI: 10.1063/5.0203366
Mark E. Turiansky, Kamyar Parto, Galan Moody, Chris G. Van de Walle
Single-photon emitters are an essential component of quantum networks, and defects or impurities in semiconductors are a promising platform to realize such quantum emitters. Here, we present a model that encapsulates the essential physics of coupling to phonons, which governs the behavior of real single-photon emitters, and critically evaluate several approximations that are commonly utilized. Emission in the telecom wavelength range is highly desirable, but our model shows that nonradiative processes are greatly enhanced at these low photon energies, leading to a decrease in efficiency. Our results suggest that reducing the phonon frequency is a fruitful avenue to enhance the efficiency.
单光子发射器是量子网络的重要组成部分,而半导体中的缺陷或杂质是实现此类量子发射器的理想平台。在此,我们提出了一个模型,该模型囊括了与声子耦合的基本物理学原理,而这正是实际单光子发射器行为的主导因素,我们还对常用的几种近似方法进行了严格评估。电信波长范围内的发射是非常理想的,但我们的模型显示,在这些低光子能量下,非辐射过程会大大增强,从而导致效率下降。我们的结果表明,降低声子频率是提高效率的有效途径。
{"title":"Rational design of efficient defect-based quantum emitters","authors":"Mark E. Turiansky, Kamyar Parto, Galan Moody, Chris G. Van de Walle","doi":"10.1063/5.0203366","DOIUrl":"https://doi.org/10.1063/5.0203366","url":null,"abstract":"Single-photon emitters are an essential component of quantum networks, and defects or impurities in semiconductors are a promising platform to realize such quantum emitters. Here, we present a model that encapsulates the essential physics of coupling to phonons, which governs the behavior of real single-photon emitters, and critically evaluate several approximations that are commonly utilized. Emission in the telecom wavelength range is highly desirable, but our model shows that nonradiative processes are greatly enhanced at these low photon energies, leading to a decrease in efficiency. Our results suggest that reducing the phonon frequency is a fruitful avenue to enhance the efficiency.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
APL Photonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1