CHENILLE: Coupled Behavior Understanding of Faults: from the Laboratory to the Field

Q2 Earth and Planetary Sciences Advances in Geosciences Pub Date : 2023-03-17 DOI:10.5194/adgeo-58-177-2023
Audrey Bonnelye, Pierre Dick, Marco Bohnhoff, Fabrice Cotton, Rüdiger Giese, Jan Henninges, Damien Jougnot, Grzegorz Kwiatek, Stefan Lüth
{"title":"CHENILLE: Coupled Behavior Understanding of Faults: from the Laboratory to the Field","authors":"Audrey Bonnelye, Pierre Dick, Marco Bohnhoff, Fabrice Cotton, Rüdiger Giese, Jan Henninges, Damien Jougnot, Grzegorz Kwiatek, Stefan Lüth","doi":"10.5194/adgeo-58-177-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The understanding of coupled thermo-hydro-mechanical behaviour of fault zones or in naturally fractured reservoirs is essential both for fundamental and applied sciences and in particular for the safety assessment of radioactive waste disposal facilities. The overall objective of the CHENILLE project is to better understand the physical processes resulting from thermal and hydraulic loading in a small fault zone in a highly consolidated shale formation. Consequently, a thermally controlled in-situ fluid injection experiment is intended to be performed on a strike-slip fault zone outcropping at the Tournemire/France Underground Research Laboratory (URL). A heating system has been installed around the injection area to enable a precise and controlled incremental increase of the thermal load. Different monitoring systems are designed to measure the seismic and aseismic deformation induced either by thermal and/or by hydraulic loading. The seismic monitoring system is composed of Acoustic Emission (AE) and broadband seismic sensors enabling monitoring of seismic fracturing processes down to sub-decimetre scale as well as slow deformation processes. Furthermore, we are about to install an injection chamber allowing to perform a controlled gaz injection test. The injection borehole will also be partly equipped with fiber optics in order to measure temperature in a distributed manner in the borehole. Time-lapse active seismic surveys are scheduled for before and after the experiment to image the structural network but also to detect the appearance of new structures triggered from the hydro-thermal pressurization of the fault as well as eventual changes in the velocity field.","PeriodicalId":7329,"journal":{"name":"Advances in Geosciences","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/adgeo-58-177-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The understanding of coupled thermo-hydro-mechanical behaviour of fault zones or in naturally fractured reservoirs is essential both for fundamental and applied sciences and in particular for the safety assessment of radioactive waste disposal facilities. The overall objective of the CHENILLE project is to better understand the physical processes resulting from thermal and hydraulic loading in a small fault zone in a highly consolidated shale formation. Consequently, a thermally controlled in-situ fluid injection experiment is intended to be performed on a strike-slip fault zone outcropping at the Tournemire/France Underground Research Laboratory (URL). A heating system has been installed around the injection area to enable a precise and controlled incremental increase of the thermal load. Different monitoring systems are designed to measure the seismic and aseismic deformation induced either by thermal and/or by hydraulic loading. The seismic monitoring system is composed of Acoustic Emission (AE) and broadband seismic sensors enabling monitoring of seismic fracturing processes down to sub-decimetre scale as well as slow deformation processes. Furthermore, we are about to install an injection chamber allowing to perform a controlled gaz injection test. The injection borehole will also be partly equipped with fiber optics in order to measure temperature in a distributed manner in the borehole. Time-lapse active seismic surveys are scheduled for before and after the experiment to image the structural network but also to detect the appearance of new structures triggered from the hydro-thermal pressurization of the fault as well as eventual changes in the velocity field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪尼尔:故障的耦合行为理解:从实验室到现场
摘要了解断层带或天然裂缝储层的热-水-力学耦合行为对基础科学和应用科学,特别是对放射性废物处理设施的安全评估都是必不可少的。CHENILLE项目的总体目标是更好地了解在高度固结的页岩地层的小断层带中,由热载荷和水力载荷引起的物理过程。因此,在Tournemire/France地下研究实验室(URL)的走滑断裂带露头上进行了一项热控原位流体注入实验。在注入区域周围安装了加热系统,以实现精确和可控的热负荷增量增加。设计了不同的监测系统来测量由热载荷和/或水力载荷引起的地震和地震变形。地震监测系统由声发射(AE)和宽带地震传感器组成,能够监测亚分米尺度的地震压裂过程以及缓慢的变形过程。此外,我们即将安装一个注射室,允许进行受控的气体注射测试。注入井眼还将部分配备光纤,以便在井眼内以分布式方式测量温度。在实验前后计划进行时移主动地震调查,以对构造网进行成像,并检测由断层的热液加压引发的新构造的外观以及速度场的最终变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Geosciences
Advances in Geosciences Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
3.70
自引率
0.00%
发文量
16
审稿时长
30 weeks
期刊介绍: Advances in Geosciences (ADGEO) is an international, interdisciplinary journal for fast publication of collections of short, but self-contained communications in the Earth, planetary and solar system sciences, published in separate volumes online with the option of a publication on paper (print-on-demand). The collections may include papers presented at scientific meetings (proceedings) or articles on a well defined topic compiled by individual editors or organizations (special publications). The evaluation of the manuscript is organized by Guest-Editors, i.e. either by the conveners of a session of a conference or by the organizers of a meeting or workshop or by editors appointed otherwise, and their chosen referees.
期刊最新文献
Terrain-based evaluation of groundwater potential and long-term monitoring at the catchment scale in Taiwan Criteria for selection of technology to exploit groundwater in water-scarce area in Vietnam Multi-salinity core flooding study in clay-bearing sandstones, a contribution to geothermal reservoir characterisation Preface to the special issue of the Division Energy, Resources and the Environment at the EGU General Assembly 2023 Storm Franz: Societal and energy impacts in northwest Europe on 11–12 January 2007
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1