{"title":"Properties and interpretation of the Skellam model—A discrete‐time contest competition population model","authors":"Jurģis Šuba, Yukichika Kawata, Andreas Lindén","doi":"10.1002/1438-390x.12169","DOIUrl":null,"url":null,"abstract":"Abstract The Skellam model describes discrete‐time population dynamics of a single species assuming uniform (i.e., random or Poissonian) individual distribution and intraspecific contest competition. Apart from studies on individual‐based models derived from first principles it has been rarely applied in ecological research although in specific situations it may be more appropriate than, for instance, the frequently used Ricker model, which is derived assuming scramble competition among the individuals. In this article, we offer an insight into the first principles underlying the Skellam model and provide an alternative parameterization of the model in terms of two commonly used parameters: intrinsic rate of population increase and carrying capacity. We also provide guidelines and software for fitting the Skellam model to discrete population time series data. In light of these findings, the Skellam model may be a useful alternative for a range of purposes where it has been earlier overlooked.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1438-390x.12169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Skellam model describes discrete‐time population dynamics of a single species assuming uniform (i.e., random or Poissonian) individual distribution and intraspecific contest competition. Apart from studies on individual‐based models derived from first principles it has been rarely applied in ecological research although in specific situations it may be more appropriate than, for instance, the frequently used Ricker model, which is derived assuming scramble competition among the individuals. In this article, we offer an insight into the first principles underlying the Skellam model and provide an alternative parameterization of the model in terms of two commonly used parameters: intrinsic rate of population increase and carrying capacity. We also provide guidelines and software for fitting the Skellam model to discrete population time series data. In light of these findings, the Skellam model may be a useful alternative for a range of purposes where it has been earlier overlooked.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.