Nonparametric Instrumental Regression with Two-Way Fixed Effects

Q3 Mathematics Journal of Econometric Methods Pub Date : 2023-10-05 DOI:10.1515/jem-2022-0025
Enrico De Monte
{"title":"Nonparametric Instrumental Regression with Two-Way Fixed Effects","authors":"Enrico De Monte","doi":"10.1515/jem-2022-0025","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a novel estimator for nonparametric instrumental regression while controlling for additive two-way fixed effects. In particular, the Landweber–Fridman regularization, to overcome the ill-posed inverse problem in the nonparametric instrumental regression procedure, is combined with the local-within two-ways fixed effect estimator presented by Lee, Y., D. Mukherjee, and A. Ullah. (2019. “Nonparametric Estimation of the Marginal Effect in Fixed-Effect Panel Data Models.” Journal of Multivariate Analysis 171: 53–67). Compared to other estimators in this context, an appealing feature is its flexible applicability with respect to different panel model specifications, i.e. models comprising either individual, temporal, or two-way fixed effects. The estimator’s performance is tested on simulated data, where a Monte Carlo study reveals good finite sample behaviour. Confidence intervals are provided by applying the wild bootstrap.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"300 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2022-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper proposes a novel estimator for nonparametric instrumental regression while controlling for additive two-way fixed effects. In particular, the Landweber–Fridman regularization, to overcome the ill-posed inverse problem in the nonparametric instrumental regression procedure, is combined with the local-within two-ways fixed effect estimator presented by Lee, Y., D. Mukherjee, and A. Ullah. (2019. “Nonparametric Estimation of the Marginal Effect in Fixed-Effect Panel Data Models.” Journal of Multivariate Analysis 171: 53–67). Compared to other estimators in this context, an appealing feature is its flexible applicability with respect to different panel model specifications, i.e. models comprising either individual, temporal, or two-way fixed effects. The estimator’s performance is tested on simulated data, where a Monte Carlo study reveals good finite sample behaviour. Confidence intervals are provided by applying the wild bootstrap.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有双向固定效应的非参数工具回归
摘要本文提出了一种新的非参数工具回归估计量,同时控制了可加性双向固定效应。特别是,为了克服非参数工具回归过程中的不适定逆问题,将Landweber-Fridman正则化与Lee, Y., D. Mukherjee和A. Ullah提出的局域内双向固定效应估计器相结合。(2019。固定效应面板数据模型中边际效应的非参数估计多变量分析学报(自然科学版);与此上下文中的其他估计器相比,一个吸引人的特征是它对不同面板模型规范的灵活适用性,即包括个体、时间或双向固定效应的模型。估计器的性能在模拟数据上进行了测试,其中蒙特卡罗研究显示出良好的有限样本行为。置信区间是通过应用野引导来提供的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1