Development of an Appropriate Model for the Optional Lane-changing Rate in Weaving Segments with Short Lengths

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Scientia Iranica Pub Date : 2023-09-03 DOI:10.24200/sci.2023.58865.5937
Ali Kashani, Behrooz Shirgir, Shervin Sayyar
{"title":"Development of an Appropriate Model for the Optional Lane-changing Rate in Weaving Segments with Short Lengths","authors":"Ali Kashani, Behrooz Shirgir, Shervin Sayyar","doi":"10.24200/sci.2023.58865.5937","DOIUrl":null,"url":null,"abstract":"In order to compute level of service and density in weaving segments, the Highway Capacity Manual (HCM) defined for the first time in 2010 a relationship based on a lane change rate to assess the density of the weaving segment. It is critical to accurately estimate lane changing rate in these situations, but field observations in weaving segments shorter than 250 meters in Tehran, Iran revealed a significant difference between the HCM2016 model estimate and field data. The traffic and geometric data collected at 87 (15-minute) intervals from six weaving segments in Tehran were used to develop models for estimating lane changing rate in weaving segments. These 87 intervals were then divided into 69 (terrain data) for equations and 18 (test data) for model comparisons. Weaving volume and weaving segment area are introduced as two independent variables in the optional lane changing rate model of weaving vehicles in this study, with R2=0.74. Furthermore, for a lane-changing model of non-weaving vehicles with R2=0.95, two new variables of non-weaving volume and traffic solidity were defined. Finally, based on the 18 intervals used to test the results, it showed the improvement of the developed models results compared to HCM2016 models.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/sci.2023.58865.5937","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to compute level of service and density in weaving segments, the Highway Capacity Manual (HCM) defined for the first time in 2010 a relationship based on a lane change rate to assess the density of the weaving segment. It is critical to accurately estimate lane changing rate in these situations, but field observations in weaving segments shorter than 250 meters in Tehran, Iran revealed a significant difference between the HCM2016 model estimate and field data. The traffic and geometric data collected at 87 (15-minute) intervals from six weaving segments in Tehran were used to develop models for estimating lane changing rate in weaving segments. These 87 intervals were then divided into 69 (terrain data) for equations and 18 (test data) for model comparisons. Weaving volume and weaving segment area are introduced as two independent variables in the optional lane changing rate model of weaving vehicles in this study, with R2=0.74. Furthermore, for a lane-changing model of non-weaving vehicles with R2=0.95, two new variables of non-weaving volume and traffic solidity were defined. Finally, based on the 18 intervals used to test the results, it showed the improvement of the developed models results compared to HCM2016 models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短路段可选变道率模型的建立
为了计算编织路段的服务水平和密度,公路通行能力手册(HCM)于2010年首次定义了基于变道率的关系来评估编织路段的密度。在这种情况下,准确估计换道率至关重要,但在伊朗德黑兰短于250米的编织段的现场观测显示,HCM2016模型估算值与现场数据存在显著差异。本文利用德黑兰6个编织路段87(15分钟)间隔收集的交通和几何数据,建立了估算编织路段变道率的模型。然后将这87个区间分为69个(地形数据)用于方程,18个(测试数据)用于模型比较。本研究将编织体积和编织段面积作为两个自变量引入编织车辆可选变道率模型,R2=0.74。在R2=0.95的非编织车辆变道模型中,定义了非编织体积和交通固体度两个新变量。最后,利用18个区间对结果进行检验,对比HCM2016模型,表明所开发模型的结果有较好的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientia Iranica
Scientia Iranica 工程技术-工程:综合
CiteScore
2.90
自引率
7.10%
发文量
59
审稿时长
2 months
期刊介绍: The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas. The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.
期刊最新文献
A New Approach to Estimating Destinations in Open Automated Fare Collection Systems based on errors-against-errors strategy Shared autonomous vehicle with pooled service, a modal shift approach Analysis of waves subjected to mechanical force and voids source in an initially stressed magneto-elastic medium with corrugated and impedance boundary Numerical study of slip and Magnetohydrodynamics (MHD) in calendering process using non-Newtonian fluid An efficient biogas-base tri-generation of power, heating and cooling integrating inverted Brayton and ejector transcritical CO2 cycles: exergoeconomic evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1