Machine learning for numerical weather and climate modelling: a review

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscientific Model Development Pub Date : 2023-11-14 DOI:10.5194/gmd-16-6433-2023
Catherine O. de Burgh-Day, Tennessee Leeuwenburg
{"title":"Machine learning for numerical weather and climate modelling: a review","authors":"Catherine O. de Burgh-Day, Tennessee Leeuwenburg","doi":"10.5194/gmd-16-6433-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Machine learning (ML) is increasing in popularity in the field of weather and climate modelling. Applications range from improved solvers and preconditioners, to parameterization scheme emulation and replacement, and more recently even to full ML-based weather and climate prediction models. While ML has been used in this space for more than 25 years, it is only in the last 10 or so years that progress has accelerated to the point that ML applications are becoming competitive with numerical knowledge-based alternatives. In this review, we provide a roughly chronological summary of the application of ML to aspects of weather and climate modelling from early publications through to the latest progress at the time of writing. We also provide an overview of key ML terms, methodologies, and ethical considerations. Finally, we discuss some potentially beneficial future research directions. Our aim is to provide a primer for researchers and model developers to rapidly familiarize and update themselves with the world of ML in the context of weather and climate models.","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"5 12","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gmd-16-6433-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract. Machine learning (ML) is increasing in popularity in the field of weather and climate modelling. Applications range from improved solvers and preconditioners, to parameterization scheme emulation and replacement, and more recently even to full ML-based weather and climate prediction models. While ML has been used in this space for more than 25 years, it is only in the last 10 or so years that progress has accelerated to the point that ML applications are becoming competitive with numerical knowledge-based alternatives. In this review, we provide a roughly chronological summary of the application of ML to aspects of weather and climate modelling from early publications through to the latest progress at the time of writing. We also provide an overview of key ML terms, methodologies, and ethical considerations. Finally, we discuss some potentially beneficial future research directions. Our aim is to provide a primer for researchers and model developers to rapidly familiarize and update themselves with the world of ML in the context of weather and climate models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数值天气和气候模型的机器学习:综述
摘要机器学习(ML)在天气和气候建模领域越来越受欢迎。应用范围从改进的求解器和预调节器,到参数化方案仿真和替换,最近甚至到完全基于ml的天气和气候预测模型。虽然机器学习在这个领域已经使用了超过25年,但直到最近10年左右,机器学习的发展才加速到与基于数字知识的替代品竞争的程度。在这篇综述中,我们大致按时间顺序总结了ML在天气和气候建模方面的应用,从早期的出版物到撰写本文时的最新进展。我们还概述了关键的机器学习术语、方法和道德考虑。最后,讨论了未来可能有益的研究方向。我们的目标是为研究人员和模型开发人员提供一本入门书,以便他们在天气和气候模型的背景下快速熟悉和更新ML世界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscientific Model Development
Geoscientific Model Development GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
8.60
自引率
9.80%
发文量
352
审稿时长
6-12 weeks
期刊介绍: Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication: * geoscientific model descriptions, from statistical models to box models to GCMs; * development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results; * new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data; * papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data; * model experiment descriptions, including experimental details and project protocols; * full evaluations of previously published models.
期刊最新文献
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community. Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry. Understanding changes in cloud simulations from E3SM version 1 to version 2 Development of inter-grid-cell lateral unsaturated and saturated flow model in the E3SM Land Model (v2.0) WRF (v4.0)–SUEWS (v2018c) coupled system: development, evaluation and application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1