{"title":"Low-Complexity BFGS-Based Soft-Output MMSE Detector for Massive MIMO Uplink","authors":"Lin Li, Jianhao Hu","doi":"10.1049/2023/8887060","DOIUrl":null,"url":null,"abstract":"For the massive multiple-input multiple-output (MIMO) uplink, the linear minimum mean square error (MMSE) detector is near-optimal but involves undesirable matrix inversion. In this paper, we propose a low-complexity soft-output detector based on the simplified Broyden–Fletcher–Goldfarb–Shanno method to realize the matrix-inversion-free MMSE detection iteratively. To accelerate convergence with minimal computational overhead, an appropriate initial solution is presented leveraging the channel-hardening property of massive MIMO. Moreover, we employ a low-complexity approximated approach to calculating the log-likelihood ratios with negligible performance losses. Simulation results finally verify that the proposed detector can achieve the near-MMSE performance with a few iterations and outperforms the recently reported linear detectors in terms of lower complexity and faster convergence for the realistic massive MIMO systems.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"5 3","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/8887060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
For the massive multiple-input multiple-output (MIMO) uplink, the linear minimum mean square error (MMSE) detector is near-optimal but involves undesirable matrix inversion. In this paper, we propose a low-complexity soft-output detector based on the simplified Broyden–Fletcher–Goldfarb–Shanno method to realize the matrix-inversion-free MMSE detection iteratively. To accelerate convergence with minimal computational overhead, an appropriate initial solution is presented leveraging the channel-hardening property of massive MIMO. Moreover, we employ a low-complexity approximated approach to calculating the log-likelihood ratios with negligible performance losses. Simulation results finally verify that the proposed detector can achieve the near-MMSE performance with a few iterations and outperforms the recently reported linear detectors in terms of lower complexity and faster convergence for the realistic massive MIMO systems.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf