Farhan M. Nashwan, Amr A. Alammari, Abdu saif, Saeed Hamood Alsamhi
{"title":"Deep Reinforcement Learning Explores EH-RIS for Spectrum-Efficient Drone Communication in 6G","authors":"Farhan M. Nashwan, Amr A. Alammari, Abdu saif, Saeed Hamood Alsamhi","doi":"10.1049/2024/9548468","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Reconfigurable intelligent surfaces (RISs) have emerged as a groundbreaking technology, revolutionizing wireless networks with enhanced spectrum and energy efficiency (EE). When integrated with drones, the combination offers ubiquitous deployment services in communication-constrained areas. However, the limited battery life of drones hampers their performance. To address this, we introduce an innovative energy harvesting (EH), that is, EH-RIS. EH-RIS strategically divides passive reflection arrays across geometric space, improving EH and information transformation (IT). Employing a meticulous, exhaustive search algorithm, the resources of the drone-RIS system are dynamically allocated across time and space to maximize harvested energy while ensuring optimal communication quality. Deep reinforcement learning (DRL) is employed to investigate drone-RIS performance by intelligently allocating resources for EH and signal reflection. The results demonstrate the effectiveness of the DRL-based EH-RIS simultaneous wireless information and power transfer (SWIPT) system, demonstrating enhanced drone-RIS spectrum-efficient communication capabilities. Our investigation is summarized in unleashing potential, which shows how DRL and EH-RIS work together to optimize drone-RIS for next-generation wireless networks.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/9548468","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/9548468","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable intelligent surfaces (RISs) have emerged as a groundbreaking technology, revolutionizing wireless networks with enhanced spectrum and energy efficiency (EE). When integrated with drones, the combination offers ubiquitous deployment services in communication-constrained areas. However, the limited battery life of drones hampers their performance. To address this, we introduce an innovative energy harvesting (EH), that is, EH-RIS. EH-RIS strategically divides passive reflection arrays across geometric space, improving EH and information transformation (IT). Employing a meticulous, exhaustive search algorithm, the resources of the drone-RIS system are dynamically allocated across time and space to maximize harvested energy while ensuring optimal communication quality. Deep reinforcement learning (DRL) is employed to investigate drone-RIS performance by intelligently allocating resources for EH and signal reflection. The results demonstrate the effectiveness of the DRL-based EH-RIS simultaneous wireless information and power transfer (SWIPT) system, demonstrating enhanced drone-RIS spectrum-efficient communication capabilities. Our investigation is summarized in unleashing potential, which shows how DRL and EH-RIS work together to optimize drone-RIS for next-generation wireless networks.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf