Accurate Fetal QRS-Complex Classification from Abdominal Electrocardiogram Using Deep Learning

Annisa Darmawahyuni, Bambang Tutuko, Siti Nurmaini, Muhammad Naufal Rachmatullah, Muhammad Ardiansyah, Firdaus Firdaus, Ade Iriani Sapitri, Anggun Islami
{"title":"Accurate Fetal QRS-Complex Classification from Abdominal Electrocardiogram Using Deep Learning","authors":"Annisa Darmawahyuni, Bambang Tutuko, Siti Nurmaini, Muhammad Naufal Rachmatullah, Muhammad Ardiansyah, Firdaus Firdaus, Ade Iriani Sapitri, Anggun Islami","doi":"10.1007/s44196-023-00339-x","DOIUrl":null,"url":null,"abstract":"Abstract Fetal heart monitoring during pregnancy plays a critical role in diagnosing congenital heart disease (CHD). A noninvasive fetal electrocardiogram (fECG) provides additional clinical information for fetal heart monitoring. To date, the analysis of noninvasive fECG is challenging due to the cancellation of maternal QRS-complexes, despite significant advances in electrocardiography. Fetal QRS-complex is highly considered to measure fetal heart rate to detect some fetal abnormalities such as arrhythmia. In this study, we proposed a deep learning (DL) framework that stacked a convolutional layer and bidirectional long short-term memory for fetal QRS-complexes classification. The fECG signals are first preprocessed using discrete wavelet transform (DWT) to remove the noise or inferences. The following step beats and QRS-complex segmentation. The last step is fetal QRS-complex classification based on DL. In the experiment of Physionet/Computing in Cardiology Challenge 2013, this study achieved 100% accuracy, sensitivity, specificity, precision, and F1-score. A stacked DL model demonstrates an effective tool for fetal QRS-complex classification and contributes to clinical applications for long-term maternal and fetal monitoring.","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"35 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44196-023-00339-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Fetal heart monitoring during pregnancy plays a critical role in diagnosing congenital heart disease (CHD). A noninvasive fetal electrocardiogram (fECG) provides additional clinical information for fetal heart monitoring. To date, the analysis of noninvasive fECG is challenging due to the cancellation of maternal QRS-complexes, despite significant advances in electrocardiography. Fetal QRS-complex is highly considered to measure fetal heart rate to detect some fetal abnormalities such as arrhythmia. In this study, we proposed a deep learning (DL) framework that stacked a convolutional layer and bidirectional long short-term memory for fetal QRS-complexes classification. The fECG signals are first preprocessed using discrete wavelet transform (DWT) to remove the noise or inferences. The following step beats and QRS-complex segmentation. The last step is fetal QRS-complex classification based on DL. In the experiment of Physionet/Computing in Cardiology Challenge 2013, this study achieved 100% accuracy, sensitivity, specificity, precision, and F1-score. A stacked DL model demonstrates an effective tool for fetal QRS-complex classification and contributes to clinical applications for long-term maternal and fetal monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习从腹部心电图准确分类胎儿qrs -复合体
妊娠期胎儿心脏监测对先天性心脏病(CHD)的诊断具有重要意义。无创胎儿心电图(fECG)为胎儿心脏监测提供了额外的临床信息。迄今为止,尽管心电图技术取得了重大进展,但由于母体qrs复合物的取消,无创性fECG分析仍具有挑战性。胎儿qrs复合体在检测胎儿心律失常等胎儿异常时被高度重视。在这项研究中,我们提出了一个深度学习(DL)框架,该框架堆叠了卷积层和双向长短期记忆,用于胎儿qrs复合物的分类。首先使用离散小波变换(DWT)对fECG信号进行预处理以去除噪声或推断。接下来的步骤是节拍和qrs复合分割。最后一步是基于DL的胎儿qrs复合体分类。在Physionet/Computing In Cardiology Challenge 2013的实验中,本研究达到100%的准确度、灵敏度、特异性、精密度和f1评分。堆叠DL模型是一种有效的胎儿qrs复杂分类工具,有助于临床应用于母体和胎儿的长期监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Intelligence Systems
International Journal of Computational Intelligence Systems 工程技术-计算机:跨学科应用
自引率
3.40%
发文量
94
期刊介绍: The International Journal of Computational Intelligence Systems publishes original research on all aspects of applied computational intelligence, especially targeting papers demonstrating the use of techniques and methods originating from computational intelligence theory. The core theories of computational intelligence are fuzzy logic, neural networks, evolutionary computation and probabilistic reasoning. The journal publishes only articles related to the use of computational intelligence and broadly covers the following topics: -Autonomous reasoning- Bio-informatics- Cloud computing- Condition monitoring- Data science- Data mining- Data visualization- Decision support systems- Fault diagnosis- Intelligent information retrieval- Human-machine interaction and interfaces- Image processing- Internet and networks- Noise analysis- Pattern recognition- Prediction systems- Power (nuclear) safety systems- Process and system control- Real-time systems- Risk analysis and safety-related issues- Robotics- Signal and image processing- IoT and smart environments- Systems integration- System control- System modelling and optimization- Telecommunications- Time series prediction- Warning systems- Virtual reality- Web intelligence- Deep learning
期刊最新文献
A LDA-Based Social Media Data Mining Framework for Plastic Circular Economy Identifying People’s Faces in Smart Banking Systems Using Artificial Neural Networks A GMEE-WFED System: Optimizing Wind Turbine Distribution for Enhanced Renewable Energy Generation in the Future Active Exploration Deep Reinforcement Learning for Continuous Action Space with Forward Prediction Optimized Convolutional Forest by Particle Swarm Optimizer for Pothole Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1