首页 > 最新文献

International Journal of Computational Intelligence Systems最新文献

英文 中文
Dual Adapter Tuning of Vision-Language Models Using Large Language Models. 使用大型语言模型的视觉语言模型的双适配器调优。
IF 2.9 4区 计算机科学 Pub Date : 2025-01-01 Epub Date: 2025-05-08 DOI: 10.1007/s44196-025-00853-0
Mohammad Reza Zarei, Abbas Akkasi, Majid Komeili

Vision-language models (VLMs) pre-trained on large-scale image-text pairs have shown impressive results in zero-shot vision tasks. Knowledge transferability of these models can be further improved with the help of a limited number of samples. Feature adapter tuning is a prominent approach employed for efficient transfer learning (ETL). However, most of the previous ETL models focus on tuning either prior-independent or prior-dependent feature adapters. We propose a novel ETL approach that leverages both adapter styles simultaneously. Additionally, most existing ETL models rely on using textual prompts constructed by completing general pre-defined templates. This approach neglects the descriptive knowledge that can assist VLM by presenting an informative prompt. Instead of pre-defined templates for prompt construction, we use a pre-trained LLM to generate attribute-specific prompts for each visual category. Furthermore, we guide the VLM with context-aware discriminative information generated by the pre-trained LLM to emphasize features that distinguish the most probable candidate classes. The proposed ETL model is evaluated on 11 datasets and sets a new state of the art. Our code and all collected prompts are publicly available at https://github.com/mrzarei5/DATViL.

在大规模图像-文本对上进行预训练的视觉语言模型(VLMs)在零射击视觉任务中显示出令人印象深刻的结果。在有限样本的帮助下,这些模型的知识可转移性可以进一步提高。特征适配器调优是实现高效迁移学习(ETL)的重要方法。但是,以前的大多数ETL模型都侧重于调优与先验无关或依赖于先验的特性适配器。我们提出了一种新颖的ETL方法,它同时利用了这两种适配器样式。此外,大多数现有的ETL模型依赖于使用通过完成一般预定义模板构造的文本提示。这种方法忽略了可以通过提供信息提示来帮助VLM的描述性知识。我们使用预训练的LLM来为每个视觉类别生成特定属性的提示,而不是用于提示构建的预定义模板。此外,我们使用预训练的LLM生成的上下文感知判别信息来指导VLM,以强调区分最可能候选类的特征。提出的ETL模型在11个数据集上进行了评估,并设定了一个新的艺术状态。我们的代码和所有收集到的提示都可以在https://github.com/mrzarei5/DATViL上公开获得。
{"title":"Dual Adapter Tuning of Vision-Language Models Using Large Language Models.","authors":"Mohammad Reza Zarei, Abbas Akkasi, Majid Komeili","doi":"10.1007/s44196-025-00853-0","DOIUrl":"https://doi.org/10.1007/s44196-025-00853-0","url":null,"abstract":"<p><p>Vision-language models (VLMs) pre-trained on large-scale image-text pairs have shown impressive results in zero-shot vision tasks. Knowledge transferability of these models can be further improved with the help of a limited number of samples. Feature adapter tuning is a prominent approach employed for efficient transfer learning (ETL). However, most of the previous ETL models focus on tuning either prior-independent or prior-dependent feature adapters. We propose a novel ETL approach that leverages both adapter styles simultaneously. Additionally, most existing ETL models rely on using textual prompts constructed by completing general pre-defined templates. This approach neglects the descriptive knowledge that can assist VLM by presenting an informative prompt. Instead of pre-defined templates for prompt construction, we use a pre-trained LLM to generate attribute-specific prompts for each visual category. Furthermore, we guide the VLM with context-aware discriminative information generated by the pre-trained LLM to emphasize features that distinguish the most probable candidate classes. The proposed ETL model is evaluated on 11 datasets and sets a new state of the art. Our code and all collected prompts are publicly available at https://github.com/mrzarei5/DATViL.</p>","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"18 1","pages":"109"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144081913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responsible Detection and Mitigation of AI-Generated Text Using Hybrid Neural Networks and Feature Fusion: Toward Trustworthy Content Management in the Era of Large Language Models. 基于混合神经网络和特征融合的人工智能生成文本的负责任检测和缓解:面向大型语言模型时代的可信内容管理。
IF 3 4区 计算机科学 Pub Date : 2025-01-01 Epub Date: 2025-11-03 DOI: 10.1007/s44196-025-01025-w
Raed Alharthi, Stephen Ojo, Thomas I Nathaniel, Nagwan Abdel Samee, Muhammad Umer, Mona M Jamjoom, Shtwai Alsubai, Jawad Khan

The proliferation of AI-generated text, fueled by large language models (LLMs), presents pressing challenges in maintaining content authenticity, safeguarding academic integrity, and mitigating misinformation. This paper proposes a responsible detection and mitigation framework that leverages hybrid neural networks and multi-feature fusion to distinguish AI-generated text from human-authored content. The proposed model integrates BERT-based semantic embeddings, convolutional features via Text-CNN, and statistical descriptors into a unified representation. A CNN-BiLSTM architecture is employed to capture both local syntactic patterns and long-range semantic dependencies. The framework emphasizes responsible AI (RAI) by prioritizing interpretability and reducing bias in detection decisions. Extensive evaluations on a balanced benchmark dataset demonstrate the model's superior performance, achieving 95.4% accuracy, 94.8% precision, 94.1% recall, and a 96.7% F1-score-outperforming leading transformer-based baselines. The proposed framework is also evaluated on the CoAID external independent dataset to show generalizability. This study contributes to the responsible deployment of LLMs by enhancing transparency and robustness in AI-generated content verification, paving the way for secure and ethical integration of generative models into content management systems.

在大型语言模型(llm)的推动下,人工智能生成文本的激增在维护内容真实性、维护学术完整性和减少错误信息方面提出了紧迫的挑战。本文提出了一个负责任的检测和缓解框架,该框架利用混合神经网络和多特征融合来区分人工智能生成的文本和人类撰写的内容。该模型将基于bert的语义嵌入、基于Text-CNN的卷积特征和统计描述符集成到一个统一的表示中。采用CNN-BiLSTM体系结构捕获本地语法模式和远程语义依赖关系。该框架通过优先考虑可解释性和减少检测决策中的偏见来强调负责任的人工智能(RAI)。在平衡基准数据集上的广泛评估表明,该模型具有卓越的性能,达到95.4%的准确度,94.8%的精度,94.1%的召回率和96.7%的f1分数-优于领先的基于变压器的基线。在CoAID外部独立数据集上对所提出的框架进行了评估,以显示其泛化性。本研究通过提高人工智能生成内容验证的透明度和稳健性,为将生成模型安全和道德地集成到内容管理系统中铺平了道路,从而有助于负责任地部署法学硕士。
{"title":"Responsible Detection and Mitigation of AI-Generated Text Using Hybrid Neural Networks and Feature Fusion: Toward Trustworthy Content Management in the Era of Large Language Models.","authors":"Raed Alharthi, Stephen Ojo, Thomas I Nathaniel, Nagwan Abdel Samee, Muhammad Umer, Mona M Jamjoom, Shtwai Alsubai, Jawad Khan","doi":"10.1007/s44196-025-01025-w","DOIUrl":"10.1007/s44196-025-01025-w","url":null,"abstract":"<p><p>The proliferation of AI-generated text, fueled by large language models (LLMs), presents pressing challenges in maintaining content authenticity, safeguarding academic integrity, and mitigating misinformation. This paper proposes a responsible detection and mitigation framework that leverages hybrid neural networks and multi-feature fusion to distinguish AI-generated text from human-authored content. The proposed model integrates BERT-based semantic embeddings, convolutional features via Text-CNN, and statistical descriptors into a unified representation. A CNN-BiLSTM architecture is employed to capture both local syntactic patterns and long-range semantic dependencies. The framework emphasizes responsible AI (RAI) by prioritizing interpretability and reducing bias in detection decisions. Extensive evaluations on a balanced benchmark dataset demonstrate the model's superior performance, achieving 95.4% accuracy, 94.8% precision, 94.1% recall, and a 96.7% F1-score-outperforming leading transformer-based baselines. The proposed framework is also evaluated on the CoAID external independent dataset to show generalizability. This study contributes to the responsible deployment of LLMs by enhancing transparency and robustness in AI-generated content verification, paving the way for secure and ethical integration of generative models into content management systems.</p>","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"18 1","pages":"274"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12583390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145454116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A LDA-Based Social Media Data Mining Framework for Plastic Circular Economy 基于 LDA 的塑料循环经济社交媒体数据挖掘框架
IF 2.9 4区 计算机科学 Pub Date : 2024-01-10 DOI: 10.1007/s44196-023-00375-7
Yangyimin Xue, Chandrasekhar Kambhampati, Yongqiang Cheng, Nishikant Mishra, N. Wulandhari, Pauline Deutz
{"title":"A LDA-Based Social Media Data Mining Framework for Plastic Circular Economy","authors":"Yangyimin Xue, Chandrasekhar Kambhampati, Yongqiang Cheng, Nishikant Mishra, N. Wulandhari, Pauline Deutz","doi":"10.1007/s44196-023-00375-7","DOIUrl":"https://doi.org/10.1007/s44196-023-00375-7","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"89 9","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139440433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying People’s Faces in Smart Banking Systems Using Artificial Neural Networks 利用人工神经网络识别智能银行系统中的人脸
IF 2.9 4区 计算机科学 Pub Date : 2024-01-10 DOI: 10.1007/s44196-023-00383-7
L. Nosrati, A. Bidgoli, H. Javadi
{"title":"Identifying People’s Faces in Smart Banking Systems Using Artificial Neural Networks","authors":"L. Nosrati, A. Bidgoli, H. Javadi","doi":"10.1007/s44196-023-00383-7","DOIUrl":"https://doi.org/10.1007/s44196-023-00383-7","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"36 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A GMEE-WFED System: Optimizing Wind Turbine Distribution for Enhanced Renewable Energy Generation in the Future GMEE-WFED 系统:优化风力涡轮机分布,提高未来可再生能源发电量
IF 2.9 4区 计算机科学 Pub Date : 2024-01-08 DOI: 10.1007/s44196-023-00391-7
M. A. Salman, M. A. Mahdi, Samaher Al-Janabi
{"title":"A GMEE-WFED System: Optimizing Wind Turbine Distribution for Enhanced Renewable Energy Generation in the Future","authors":"M. A. Salman, M. A. Mahdi, Samaher Al-Janabi","doi":"10.1007/s44196-023-00391-7","DOIUrl":"https://doi.org/10.1007/s44196-023-00391-7","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"20 17","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Exploration Deep Reinforcement Learning for Continuous Action Space with Forward Prediction 带前瞻性预测的连续行动空间主动探索深度强化学习
IF 2.9 4区 计算机科学 Pub Date : 2024-01-08 DOI: 10.1007/s44196-023-00389-1
Dongfang Zhao, Huanshi Xu, Zhang Xun
{"title":"Active Exploration Deep Reinforcement Learning for Continuous Action Space with Forward Prediction","authors":"Dongfang Zhao, Huanshi Xu, Zhang Xun","doi":"10.1007/s44196-023-00389-1","DOIUrl":"https://doi.org/10.1007/s44196-023-00389-1","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"56 18","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Convolutional Forest by Particle Swarm Optimizer for Pothole Detection 利用粒子群优化器优化用于坑洞检测的卷积森林
IF 2.9 4区 计算机科学 Pub Date : 2024-01-08 DOI: 10.1007/s44196-023-00390-8
Abeer Aljohani
{"title":"Optimized Convolutional Forest by Particle Swarm Optimizer for Pothole Detection","authors":"Abeer Aljohani","doi":"10.1007/s44196-023-00390-8","DOIUrl":"https://doi.org/10.1007/s44196-023-00390-8","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"55 47","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Implementation of Remote Piano Teaching Based on Attention-Induced Multi-Head Convolutional Neural Network Optimized with Hunter–Prey Optimization 基于猎人-猎物优化的注意力诱导多头卷积神经网络的远程钢琴教学设计与实现
IF 2.9 4区 计算机科学 Pub Date : 2024-01-03 DOI: 10.1007/s44196-023-00379-3
Li Song
{"title":"Design and Implementation of Remote Piano Teaching Based on Attention-Induced Multi-Head Convolutional Neural Network Optimized with Hunter–Prey Optimization","authors":"Li Song","doi":"10.1007/s44196-023-00379-3","DOIUrl":"https://doi.org/10.1007/s44196-023-00379-3","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"142 25","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Thyroid Disease Using Optimized Machine Learning Model Based on Differential Evolution 利用基于差分进化的优化机器学习模型检测甲状腺疾病
IF 2.9 4区 计算机科学 Pub Date : 2024-01-03 DOI: 10.1007/s44196-023-00388-2
Punit Gupta, F. Rustam, Khadija Kanwal, Wajdi Aljedaani, Sultan Alfarhood, Mejdl S. Safran, I. Ashraf
{"title":"Detecting Thyroid Disease Using Optimized Machine Learning Model Based on Differential Evolution","authors":"Punit Gupta, F. Rustam, Khadija Kanwal, Wajdi Aljedaani, Sultan Alfarhood, Mejdl S. Safran, I. Ashraf","doi":"10.1007/s44196-023-00388-2","DOIUrl":"https://doi.org/10.1007/s44196-023-00388-2","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"142 48","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Domain Knowledge Transformer Model for Occupation Profiling 用于职业分析的领域知识转换器模型
IF 2.9 4区 计算机科学 Pub Date : 2023-12-21 DOI: 10.1007/s44196-023-00386-4
Zhou Ai, Zhang Yijia, Mingyu Lu
{"title":"A Domain Knowledge Transformer Model for Occupation Profiling","authors":"Zhou Ai, Zhang Yijia, Mingyu Lu","doi":"10.1007/s44196-023-00386-4","DOIUrl":"https://doi.org/10.1007/s44196-023-00386-4","url":null,"abstract":"","PeriodicalId":54967,"journal":{"name":"International Journal of Computational Intelligence Systems","volume":"48 8","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138948954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Computational Intelligence Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1